Learn More
Degradation of proteins that, because of improper or suboptimal processing, are retained in the endoplasmic reticulum (ER) involves retrotranslocation to reach the cytosolic ubiquitin-proteasome machinery. We found that substrates of this pathway, the precursor of human asialoglycoprotein receptor H2a and free heavy chains of murine class I major(More)
Nascent N-linked glycoproteins possess a large oligosaccharide precursor, Glc(3)Man(9)GlcNAc(2), which is later sequentially trimmed. Recent studies help understand the code displayed by each structure produced by this trimming and its decoding by lectins. The calnexin folding cycle targets only monoglucosylated oligosaccharides. N-glycans of misfolded(More)
Endoplasmic reticulum-associated degradation of misfolded or misprocessed glycoproteins in mammalian cells is prevented by inhibitors of class I alpha-mannosidases implicating mannose trimming from the precursor oligosaccharide Glc3Man9GlcNAc2 as an essential step in this pathway. However, the extent of mannose removal has not been determined. We show here(More)
We had previously shown that endoplasmic reticulum (ER)-associated degradation (ERAD) of glycoproteins in mammalian cells involves trimming of three to four mannose residues from the N-linked oligosaccharide Man(9)GlcNAc(2). A possible candidate for this activity, ER mannosidase I (ERManI), accelerates the degradation of ERAD substrates when overexpressed.(More)
The H2a alternatively spliced variant of the human asialoglycoprotein receptor H2 subunit differs from the H2b variant by an extra pentapeptide, EGHRG, present in the ectodomain next to the membrane-span. This difference causes retention and degradation in the endoplasmic reticulum (ER) of H2a when expressed without the H1 subunit in 3T3 cells. In contrast,(More)
COPII-coated vesicles carry proteins from the endoplasmic reticulum to the Golgi complex. This vesicular transport can be reconstituted by using three cytosolic components containing five proteins: the small GTPase Sar1p, the Sec23p/24p complex, and the Sec13p/Sec31p complex. We have used a combination of biochemistry and electron microscopy to investigate(More)
We have identified and characterized Cab45, a novel 45-kD protein from mouse 3T3-L1 adipocytes. Cab45 is ubiquitously expressed, contains an NH2-terminal signal sequence but no membrane-anchor sequences, and binds Ca2+ due to the presence of six EF-hand motifs. Within the superfamily of calcium-binding proteins, it belongs to a recently identified group of(More)
The thiol oxidoreductase endoplasmic reticulum (ER)p57 interacts with newly synthesized glycoproteins through ternary complexes with the chaperones/lectins calnexin or calreticulin. On proteasomal inhibition calnexin and calreticulin concentrate in the pericentriolar endoplasmic reticulum-derived quality control compartment that we recently described.(More)
Studies of misfolded protein targeting to endoplasmic reticulum-associated degradation (ERAD) have largely focused on glycoproteins, which include the bulk of the secretory proteins. Mechanisms of targeting of nonglycosylated proteins are less clear. Here, we studied three nonglycosylated proteins and analyzed their use of known glycoprotein quality control(More)
Although the trimming of α1,2-mannose residues from precursor N-linked oligosaccharides is an essential step in the delivery of misfolded glycoproteins to endoplasmic reticulum (ER)-associated degradation (ERAD), the exact role of this trimming is unclear. EDEM1 was initially suggested to bind N-glycans after mannose trimming, a role presently ascribed to(More)