Gerardo M. Castillo

Learn More
To determine whether a Protected Graft Copolymer (PGC) containing fatty acid can be used as a stabilizing excipient for GLP-1 and whether PGC/GLP-1 given once a week can be an effective treatment for diabetes. To create a PGC excipient, polylysine was grafted with methoxypolyethyleneglycol and fatty acid at the epsilon amino groups. We performed evaluation(More)
OBJECTIVE The pathogenesis of type 1 diabetes involves autoimmune lymphocytic destruction of insulin-producing beta-cells and metabolic dysregulation. An early biomarker of pancreatic islet damage is islet microvascular dysfunction, and alterations in vascular volume, flow, and permeability have been reported in numerous models of type 1 diabetes.(More)
Initially developed in 1992 as an MR imaging agent, the family of protected graft copolymers (PGC) is based on a conjugate of polylysine backbone to which methoxypoly(ethylene glycol) (MPEG) chains are covalently linked in a random fasion via N-ε-amino groups. While PGC is relatively simple in terms of its chemcial composition and structure, it has proved(More)
BACKGROUND Vascular parameters, such as vascular volume, flow, and permeability, are important disease biomarkers for both type 1 and type 2 diabetes. Therefore, it is essential to develop approaches to monitor the changes in pancreatic microvasculature non-invasively. METHODS Here, we describe the application of the long-circulating, paramagnetic T1(More)
To develop a long-acting formulation of native human insulin with a similar pharmacodynamics (PD) profile as the insulin analogue insulin glargine (Lantus®, Sanofi-Aventis) with the expectation of retaining native human insulin’s superior safety profile as insulin glargine is able to activate the insulin-like growth factor 1 (IGF-1) receptor and is linked(More)
To determine and compare pharmacokinetics and toxicity of two nanoformulations of Vasoactive Intestinal Peptide (VIP). VIP was formulated using a micellar (Sterically Stabilized Micelles, SSM) and a polymer-based (Protected Graft Copolymer, PGC) nanocarrier at various loading percentages. VIP binding to the nanocarriers, pharmacokinetics, blood pressure,(More)
Targeting the initial formation of amyloid assemblies is a preferred approach to therapeutic intervention in amyloidoses, which include such diseases as Alzheimer's, Parkinson's, Huntington's, etc., as the early-stage, oligomers that form before the development of beta-conformation-rich fibers are thought to be toxic. X-ray patterns from amyloid assemblies(More)
Our objective was to develop novel nanocarriers (protected graft copolymer, PGC) that improve the stability of heparin binding EGF (HBEGF) and gastrin and then to use PGC-formulated HBEGF (PGC-HBEGF) and Omeprazole (+/− PGC-gastrin) for normalizing fasting blood glucose (FBG) and improving islet function in diabetic mice. HBEGF, PGC-HBEGF, Omeprazole,(More)
We evaluated the mitigating effects of fibroblast growth factor 4 and 7 (FGF4 and FGF7, respectively) in comparison with long acting protected graft copolymer (PGC)-formulated FGF4 and 7 (PF4 and PF7, respectively) administered to C57BL/6J mice a day after exposure to LD50/30 (15.7 Gy) partial body irradiation (PBI) which targeted the gastrointestinal (GI)(More)
  • 1