Gerard Kian-Meng Goh

Learn More
We present a new representation for a genetic algorithm to evolve molecular structures representing possible drugs that bind to a given protein target receptor. Our representation is tree-structured with functional groups for leaves, and captures chemically relevant information efficiently. We assume a given target protein structure with known essential(More)
A previous study (Goh G.K.-M., Dunker A.K., Uversky V.N. (2008) Protein intrinsic disorder toolbox for comparative analysis of viral proteins. BMC Genomics. 9 (Suppl. 2), S4) revealed that HIV matrix protein p17 possesses especially high levels of predicted intrinsic disorder (PID). In this study, we analyzed the PID patterns in matrix proteins of viruses(More)
Computational analyses revealed correlations between the intrinsic disorder propensity of shell proteins and case fatality rates (CFRs) among Flaviviruses and within at least two Flavivirus species, such as tick-borne encephalitis virus (TBEV) and dengue virus (DENV). The shell proteins analyzed in this study are capsid (C) and membrane (PrM, Pr, and M)(More)
The 1918 H1N1 virus was a highly virulent strain that killed 20–50 million people. The cause of its virulence remains poorly understood. Intrinsic disorder predictor PONDR® VLXT was used to compare various influenza subtypes and strains. Three-dimensional models using data from X-ray crystallographic studies annotated with disorder prediction were used to(More)
To examine the usefulness of protein disorder predictions as a tool for the comparative analysis of viral proteins, a relational database has been constructed. The database includes proteins from influenza A and HIV-related viruses. Annotations include viral protein sequence, disorder prediction, structure, and function. Location of each protein within a(More)
Many proteins or their regions are disordered in their native, biologically active states. Bioinformatics has revealed that these proteins/regions are highly abundant in different proteomes and carry out mostly regulatory functions related to molecular recognition, signal transduction, protein-protein, and protein-nucleic acid interactions. Viruses, these(More)
A novel coronavirus, MERS-CoV (NCoV, HCoV-EMC/2012), originating from the Middle-East, has been discovered. Incoming data reveal that the virus is highly virulent to humans. A model that categorizes coronaviuses according to the hardness of their shells was developed before the discovery of MERS-CoV. Using protein intrinsic disorder prediction,(More)
Besides being a common threat to farm animals and poultry, coronavirus (CoV) was responsible for the human severe acute respiratory syndrome (SARS) epidemic in 2002-4. However, many aspects of CoV behavior, including modes of its transmission, are yet to be fully understood. We show that the amount and the peculiarities of distribution of the protein(More)
This study involves measurements of percentages of intrinsic disorder (PIDs) in the GAG protein shells of various retroviruses. Unique patterns of shell protein disorder can be seen especially when GAG proteins (matrix M, capsid C, and nucleocapsid N) of primate and non-primate retroviruses are compared. HIV-1 presents the most unique pattern of disorder(More)