Learn More
Random coil chemical shifts are commonly used to detect secondary structure elements in proteins in chemical shift index calculations. While this technique is very reliable for folded proteins, application to unfolded proteins reveals significant deviations from measured random coil shifts for certain nuclei. While some of these deviations can be ascribed(More)
Studies of proteins unfolded in acid or chemical denaturant can help in unraveling events during the earliest phases of protein folding. In order for meaningful comparisons to be made of residual structure in unfolded states, it is necessary to use random coil chemical shifts that are valid for the experimental system under study. We present a set of random(More)
Molecular evolution is driven by mutations, which may affect the fitness of an organism and are then subject to natural selection or genetic drift. Analysis of primary protein sequences and tertiary structures has yielded valuable insights into the evolution of protein function, but little is known about the evolution of functional mechanisms, protein(More)
Human amylin, or islet amyloid polypeptide, is a peptide cosecreted with insulin by the beta cells of the pancreatic islets of Langerhans. The 37-residue, C-terminally amidated human amylin peptide derives from a proprotein that undergoes disulfide bond formation in the endoplasmic reticulum and is then subjected to four enzymatic processing events in the(More)
A template-assisted conformational change of the cellular prion protein (PrP(C)) from a predominantly helical structure to an amyloid-type structure with a higher proportion of beta-sheet is thought to be the causative factor in prion diseases. Since flexibility of the polypeptide is likely to contribute to the ability of PrP(C) to undergo the(More)
NMR measurements can give important information on solution structure, without the necessity for a full-scale solution structure determination. The C-terminal protein binding domain of the ribosome-associated chaperone protein trigger factor is composed of non-contiguous parts of the polypeptide chain, with an interpolated prolyl isomerase domain. A(More)
Two-dimensional proton nuclear magnetic resonance (n.m.r.) experiments were performed on the coat protein of cowpea chlorotic mottle virus (molecular mass: 20.2 kDa) present as dimer (pH 7.5) or as capsid consisting of 180 protein monomers (pH 5.0). The spectra of both dimers and capsids showed resonances originating from the flexible N-terminal region of(More)
The conformational propensities of unfolded states of apomyoglobin have been investigated by measurement of residual dipolar couplings between (15)N and (1)H in backbone amide groups. Weak alignment of apomyoglobin in acid and urea-unfolded states was induced with both stretched and compressed polyacrylamide gels. In 8 M urea solution at pH 2.3, conditions(More)
Filoviruses, including Marburg virus (MARV) and Ebola virus (EBOV), cause fatal hemorrhagic fever in humans and non-human primates. All filoviruses encode a unique multi-functional protein termed VP35. The C-terminal double-stranded (ds)RNA-binding domain (RBD) of VP35 has been implicated in interferon antagonism and immune evasion. Crystal structures of(More)
The co-chaperone p23 forms a complex with the chaperone Hsp90 that mediates the folding pathway leading to the production of functional steroid receptors. Solution NMR spectroscopy has been used to characterize sites of interaction between Hsp90 and p23. Titration of p23 with Hsp90 results in the selective broadening of certain cross-peaks in the 15N-1H(More)