Learn More
Mitochondria play a critical role in mediating both apoptotic and necrotic cell death. The mitochondrial permeability transition (mPT) leads to mitochondrial swelling, outer membrane rupture and the release of apoptotic mediators. The mPT pore is thought to consist of the adenine nucleotide translocator, a voltage-dependent anion channel, and cyclophilin D(More)
Growing evidence indicates that microRNAs (miRNAs or miRs) are involved in basic cell functions and oncogenesis. Here we report that miR-133 has a critical role in determining cardiomyocyte hypertrophy. We observed decreased expression of both miR-133 and miR-1, which belong to the same transcriptional unit, in mouse and human models of cardiac hypertrophy.(More)
Senescent and damaged mitochondria undergo selective mitophagic elimination through mechanisms requiring two Parkinson's disease factors, the mitochondrial kinase PINK1 (PTEN-induced putative kinase protein 1; PTEN is phosphatase and tensin homolog) and the cytosolic ubiquitin ligase Parkin. The nature of the PINK-Parkin interaction and the identity of key(More)
RATIONALE Mitochondria constitute 30% of myocardial mass. Mitochondrial fusion and fission appear essential for health of most tissues. Mitochondrial fission occurs in neonatal cardiomycyte and is implicated in cardiomyocyte death. Mitochondrial fusion has not been observed in postmitotic myocytes of adult hearts, and its occurrence and function in this(More)
A series of 88 conventional follicular and Hürthle cell thyroid tumors were analyzed for RAS mutations and PAX8-PPAR gamma rearrangements using molecular methods and for galectin-3 and HBME-1 expression by immunohistochemistry. A novel LightCycler technology-based method was developed to detect point mutations in codons 12/13 and 61 of the H-RAS, K-RAS, and(More)
Basic fibroblast growth factor (FGF-2) is a pleiotropic growth factor detected in many different cells and tissues. Normally synthesized at low levels, FGF-2 is elevated in various pathologies, most notably in cancer and injury repair. To investigate the effects of elevated FGF-2, the human full-length cDNA was expressed in transgenic mice under control of(More)
RATIONALE Mitochondrial Ca(2+) uptake is essential for the bioenergetic feedback response through stimulation of Krebs cycle dehydrogenases. Close association of mitochondria to the sarcoplasmic reticulum (SR) may explain efficient mitochondrial Ca(2+) uptake despite low Ca(2+) affinity of the mitochondrial Ca(2+) uniporter. However, the existence of such(More)
The response of cardiomyocytes to biomechanical stress can determine the pathophysiology of hypertrophic cardiac disease, and targeting the pathways regulating these responses is a therapeutic goal. However, little is known about how biomechanical stress is sensed by the cardiomyocyte sarcomere to transduce intracellular hypertrophic signals or how the(More)
RATIONALE Mitochondrial dysfunction has been implicated in several cardiovascular diseases; however, the roles of mitochondrial oxidative stress and DNA damage in hypertensive cardiomyopathy are not well understood. OBJECTIVE We evaluated the contribution of mitochondrial reactive oxygen species (ROS) to cardiac hypertrophy and failure by using genetic(More)
Damaged mitochondria can be eliminated by autophagy, i.e. mitophagy, which is important for cellular homeostasis and cell survival. Despite the fact that a number of factors have been found to be important for mitophagy in mammalian cells, their individual roles in the process had not been clearly defined. Parkin is a ubiquitin-protein isopeptide ligase(More)