Gerald W. Dorn

Learn More
Mitochondria play a critical role in mediating both apoptotic and necrotic cell death. The mitochondrial permeability transition (mPT) leads to mitochondrial swelling, outer membrane rupture and the release of apoptotic mediators. The mPT pore is thought to consist of the adenine nucleotide translocator, a voltage-dependent anion channel, and cyclophilin D(More)
Growing evidence indicates that microRNAs (miRNAs or miRs) are involved in basic cell functions and oncogenesis. Here we report that miR-133 has a critical role in determining cardiomyocyte hypertrophy. We observed decreased expression of both miR-133 and miR-1, which belong to the same transcriptional unit, in mouse and human models of cardiac hypertrophy.(More)
Senescent and damaged mitochondria undergo selective mitophagic elimination through mechanisms requiring two Parkinson's disease factors, the mitochondrial kinase PINK1 (PTEN-induced putative kinase protein 1; PTEN is phosphatase and tensin homolog) and the cytosolic ubiquitin ligase Parkin. The nature of the PINK-Parkin interaction and the identity of key(More)
A series of 88 conventional follicular and Hürthle cell thyroid tumors were analyzed for RAS mutations and PAX8-PPAR gamma rearrangements using molecular methods and for galectin-3 and HBME-1 expression by immunohistochemistry. A novel LightCycler technology-based method was developed to detect point mutations in codons 12/13 and 61 of the H-RAS, K-RAS, and(More)
RATIONALE Mitochondria constitute 30% of myocardial mass. Mitochondrial fusion and fission appear essential for health of most tissues. Mitochondrial fission occurs in neonatal cardiomycyte and is implicated in cardiomyocyte death. Mitochondrial fusion has not been observed in postmitotic myocytes of adult hearts, and its occurrence and function in this(More)
RATIONALE Mammalian cardiomyocytes withdraw from the cell cycle during early postnatal development, which significantly limits the capacity of the adult mammalian heart to regenerate after injury. The regulatory mechanisms that govern cardiomyocyte cell cycle withdrawal and binucleation are poorly understood. OBJECTIVE Given the potential of microRNAs(More)
Brief periods of cardiac ischemia trigger protection from subsequent prolonged ischemia (preconditioning). epsilon Protein kinase C (epsilonPKC) has been suggested to mediate preconditioning. Here, we describe an epsilonPKC-selective agonist octapeptide, psiepsilon receptor for activated C-kinase (psiepsilonRACK), derived from an epsilonPKC sequence(More)
Receptor-mediated Gq signaling promotes hypertrophic growth of cultured neonatal rat cardiac myocytes and is postulated to transduce in vivo cardiac pressure overload hypertrophy. Although initially compensatory, hypertrophy can proceed by unknown mechanisms to cardiac failure. We used adenoviral infection and transgenic overexpression of the alpha subunit(More)
The critical cell signals that trigger cardiac hypertrophy and regulate the transition to heart failure are not known. To determine the role of Galphaq-mediated signaling pathways in these events, transgenic mice were constructed that overexpressed wild-type Galphaq in the heart using the alpha-myosin heavy chain promoter. Two-fold overexpression of Galphaq(More)
This review discusses the rapidly progressing field of cardiomyocyte signal transduction and the regulation of the hypertrophic response. When stimulated by a wide array of neurohumoral factors or when faced with an increase in ventricular-wall tension, individual cardiomyocytes undergo hypertrophic growth as an adaptive response. However, sustained cardiac(More)