Gerald Steiner

Learn More
As a molecular probe of tissue composition, IR spectroscopy can potentially serve as an adjunct to histopathology in detecting and diagnosing disease. This study demonstrates that cancerous brain tissue (astrocytoma, glioblastoma) is distinguishable from control tissue on the basis of the IR spectra of thin tissue sections. It is further shown that the IR(More)
Fibrinogen is a major plasma protein. Previous investigations of structural changes of fibrinogen due to adsorption are mostly based on indirect evidence after its desorption, whereas our measurements were performed on fibrinogen in its adsorbed state. Specific enzyme-linked immunosorption experiments showed that the amount of adsorbed fibrinogen increased(More)
In this work, the infrared (IR) spectra of living neural cells in suspension, native brain tissue, and native brain tumor tissue were investigated. Methods were developed to overcome the strong IR signal of liquid water so that the signal from the cellular biochemicals could be seen. Measurements could be performed during surgeries, within minutes after(More)
BACKGROUND Coherent anti-Stokes Raman scattering (CARS) microscopy provides fine resolution imaging and displays morphochemical properties of unstained tissue. Here, we evaluated this technique to delineate and identify brain tumors. METHODS Different human tumors (glioblastoma, brain metastases of melanoma and breast cancer) were induced in an orthotopic(More)
Molecular analytical methods are increasingly needed for a quick and reliable analysis of tissue in an operating room to provide more information during operations. In this Trends article, we highlight the current state and the developments of optical spectroscopic methods as intra operative tools. The clinical problem and challenges are illustrated on the(More)
Infrared (IR) and Raman spectroscopy are emerging biophotonic tools to recognize various diseases. The current review gives an overview of the experimental techniques, data-classification algorithms and applications to assess soft tissues, hard tissues and body fluids. The methodology section presents the principles to combine vibrational spectroscopy with(More)
Spinal cord injury triggers a series of complex biochemical alterations of nervous tissue. Up to now, such cellular events could not be studied without conventional tissue staining. The development of optical, label-free imaging techniques could provide powerful monitoring tools with the potential to be applied in vivo. In this work, we assess the ability(More)
Fourier transform infrared (FTIR) spectroscopic imaging is a relatively new method that has received great attention as a new field of analytical chemistry. The greatest benefit of this technique lies in the high molecular sensitivity combined with a spatial resolution down to a few micrometers. Another advantage is the ability to probe samples under native(More)
Established methods for imaging of biological or biomimetic samples, such as fluorescence and optical microscopy, magnetic resonance imaging (MRI), X-ray tomography or positron emission tomography (PET) are currently complemented by infrared (both near-IR and mid-IR) as well as Raman spectroscopic imaging, whether it be on a microscopic or macroscopic(More)
Established methods for characterization of tissue and diagnostics, for example histochemistry, magnetic resonance imaging (MRI), X-ray tomography, or positron emission tomography (PET), are mostly not suitable for intra-operative use. However, there is a clear need for an intra-operative diagnostics especially to identify the borderline between normal and(More)