Gerald S. Pollack

Learn More
We investigated the steering responses of tethered, flying adult female crickets (Teleogryllus oceanicus) to acoustic stimulation. Crickets responded directionally to directional sound stimulation by bending their abdomens and hind legs to one side. We interpret this response as an attempt to turn. When stimulated with a model of conspecific calling song(More)
  • G S Pollack
  • The Journal of neuroscience : the official…
  • 1988
Previous work (Pollack, 1986) showed that an identified auditory neuron of crickets, the omega neuron, selectively encodes the temporal structure of an ipsilateral sound stimulus when a contralateral stimulus is presented simultaneously, even though the contralateral stimulus is clearly encoded when it is presented alone. The present paper investigates the(More)
In crickets (Teleogryllus oceanicus), the paired auditory interneuron Omega Neuron 1 (ON1) responds to sounds with frequencies in the range from 3 to 40 kHz. The neuron is tuned to frequencies similar to that of conspecific songs (4.5 kHz), but its latency is longest for these same frequencies by a margin of 5-10 ms. Each ON1 is strongly excited by input(More)
The omega neuron 1 (ON1) of the cricket Teleogryllus oceanicus responds to conspecific signals (4.5 kHz) and to the ultrasonic echolocation sounds used by hunting, insectivorous bats. These signals differ in temporal structure as well as in carrier frequency. We show that ON1's temporal coding properties vary with carrier frequency, allowing it to encode(More)
Auditory receptor neurons exhibit sensory habituation; their responses decline with repeated stimulation. We studied the effects of sensory habituation on the neural encoding of sound localization cues using crickets as a model system. In crickets, Teleogryllus oceanicus, sound localization is based on binaural comparison of stimulus intensity. There are(More)
Crickets provide a useful model to study neural processing of sound frequency. Sound frequency is one parameter that crickets use to discriminate between conspecific signals and sounds made by predators, yet little is known about how frequency is represented at the level of auditory receptors. In this paper, we study the physiological properties of auditory(More)
Signal processing in the auditory interneuron Omega Neuron 1 (ON1) of the cricket Teleogryllus oceanicus was compared at high- and low-carrier frequencies in three different experimental paradigms. First, integration time, which corresponds to the time it takes for a neuron to reach threshold when stimulated at the minimum effective intensity, was found to(More)
There is a rich history of behavioral and physiological studies on the leg sensory systems of flies. Here we examine the anatomy of the sensory axons of two species of fly and demonstrate that the location of the axonal projections in the CNS can be correlated with the modality they encode. We studied receptors associated with proprioceptive, tactile, and(More)
Brief episodes of high-frequency firing of sensory neurons, or bursts, occur in many systems, including mammalian auditory and visual systems, and are believed to signal the occurrence of particularly important stimulus features, i.e., to function as feature detectors. However, the behavioral relevance of sensory bursts has not been established in any(More)