Gerald Jacobs

Learn More
Trichromatic colour vision depends on the presence of three types of cone photopigment. Trichromacy is the norm for all Old World monkeys, apes and humans, but in several genera of New World monkeys, colour vision is strikingly polymorphic. The difference in colour vision between these New and Old World primates results form differing arrangements of the(More)
Variations in the absorption spectra of cone photopigments over the spectral range of about 530 to 562 nanometers are a principal cause of individual differences in human color vision and of differences in color vision within and across other primates. To study the molecular basis of these variations, nucleotide sequences were determined for eight primate(More)
Most primates have short-wavelength sensitive (S) cones and one or more types of cone maximally sensitive in the middle to long wavelengths (M/L cones). These multiple cone types provide the basis for colour vision. Earlier experiments established that two species of noctural primate, the owl monkey (Aotus trivirgatus) and the bushbaby (Otolemur(More)
Direct imaging of the retina by adaptive optics allows assessment of the relative number of long-wavelength-sensitive (L) and middle-wavelength-sensitive (M) cones in living human eyes. We examine the functional consequences of variation in the relative numbers of L and M cones (L/M cone ratio) for two observers whose ratios were measured by direct imaging.(More)
High sensitivity to near-ultraviolet light is a fundamental feature of vision in many invertebrates. Among vertebrates there are some amphibians, birds and fishes that are also sensitive to near-ultraviolet wavelengths. This sensitivity can be achieved through a class of cone photoreceptor containing an ultraviolet-sensitive pigment. Although these(More)
The squirrel monkey (Saimiri sciureus) exhibits a polymorphism of colour vision: some animals are dichromatic, some trichromatic, and within each of these classes there are subtypes that resemble the protan and deutan variants of human colour vision. For each of ten individual monkeys we have obtained (i) behavioural measurements of colour vision and (ii)(More)
The electroretinogram (ERG) has been a traditional tool for the measurement and the analysis of spectral sensitivity. With the appropriate choices of stimulus and measurement conditions, the ERG permits a noninvasive examination of photopigment complement and provides the means for studying the combination of spectral signals at various locations throughout(More)
Rats (Rattus norvegicus) have two classes of cone, one containing an ultraviolet (UV)-sensitive photopigment and the other housing a pigment maximally sensitive in the middle (M) wavelengths of the visible spectrum. The manner in which signals from these two cone types contribute to rat vision was investigated through recordings of a gross electrical(More)
Colour vision allows animals to reliably distinguish differences in the distributions of spectral energies reaching the eye. Although not universal, a capacity for colour vision is sufficiently widespread across the animal kingdom to provide prima facie evidence of its importance as a tool for analysing and interpreting the visual environment. The basic(More)
A detailed an alysis was mad e of th e response characteristics of single cells in th e lat eral geniculate nucleus of the macaqu e monkey . Th e goa l was to understand how the se cells cont ribute to th e proc essing of visual information . Dat a were an alyzed from a representative sa mple of 147 cells, whose responses to equa l-energy spectra (presente(More)