Learn More
PURPOSE Local failure is a major obstacle to the cure of locally advanced non-small-cell lung cancer. 3-Dimensional conformal radiation therapy (3-DCRT) selects optimal treatment parameters to increase dose to tumor and reduce normal tissue dose, potentially permitting dose escalation. There are several ongoing trials of dose escalation using 3-Dimensional(More)
PURPOSE/OBJECTIVE This study evaluates the dosimetric benefits and feasibility of a deep inspiration breath-hold (DIBH) technique in the treatment of lung tumors. The technique has two distinct features--deep inspiration, which reduces lung density, and breath-hold, which immobilizes lung tumors, thereby allowing for reduced margins. Both of these(More)
In recent years, the sophistication and complexity of clinical treatment planning and treatment planning systems has increased significantly, particularly including three-dimensional (3D) treatment planning systems, and the use of conformal treatment planning and delivery techniques. This has led to the need for a comprehensive set of quality assurance (QA)(More)
During external beam radiotherapy, normal tissues are irradiated along with the tumor. Radiation therapists try to minimize the dose of normal tissues while delivering a high dose to the target volume. Often this is difficult and complications arise due to irradiation of normal tissues. These complications depend not only on the dose but also on volume of(More)
PURPOSE AND OBJECTIVE Late rectal bleeding is a potentially dose limiting complication of three-dimensional conformal radiotherapy (3D-CRT) for prostate cancer. The frequency of late rectal bleeding has been shown to increase as the prescription dose rises above 70 Gy. The purpose of this study is to identify features of the cumulative dose-volume histogram(More)
DISCLAIMER: This publication is based on sources and information believed to be reliable, but the AAPM and the editors disclaim any warranty or liability based on or relating to the contents of this publication. The AAPM does not endorse any products, manufacturers, or suppliers. Nothing in this publication should be interpreted as implying such endorsement.
BACKGROUND AND PURPOSE Although intensity modulated radiation therapy is characterized by three-dimensional dose distributions which are often superior to those obtained with conventional treatment plans, its routine clinical implementation is partially held back by the complexity of the beam verification. This is even more so when a dynamic multileaf(More)
Over three decades ago, the development of megavoltage accelerators revolutionized radiation oncology and provided the therapist with photons and electrons of any desired energy. The initial advantages cited for high energy photon therapy, listed below, have proved valid and accelerators have almost totally replaced orthovoltage units. Initially, it(More)
PURPOSE Three-dimensional conformal radiation therapy (3D-CRT) is a technique designed to deliver prescribed radiation doses to localized tumors with high precision, while effectively excluding the surrounding normal tissues. It facilitates tumor dose escalation which should overcome the relative resistance of tumor clonogens to conventional radiation dose(More)