Learn More
A set of genomic plasmid banks was constructed using the centromere-containing yeast shuttle vector YCp50. The centromere-containing vector is useful for the isolation of genes that are toxic to yeast when present in high copy number. Fourteen independent banks were prepared each with an average representation of two to three times the yeast genome. Any(More)
Mutations at the URA3 locus of Saccharomyces cerevisiae can be obtained by a positive selection. Wild-type strains of yeast (or ura3 mutant strains containing a plasmid-borne URA3 + gene) are unable to grow on medium containing the pyrimidine analog 5-fluoro-orotic acid, whereas ura3 − mutants grow normally. This selection, based on the loss of(More)
Diploid S. cerevisiae strains undergo a dimorphic transition that involves changes in cell shape and the pattern of cell division and results in invasive filamentous growth in response to starvation for nitrogen. Cells become long and thin and form pseudohyphae that grow away from the colony and invade the agar medium. Pseudohyphal growth allows yeast cells(More)
5-FOA is an extremely useful reagent for the selection of Ura- cells amid a population of Ura+ cells. The selection is effective in transformation and recombination studies where loss of URA3+ is desired. A new plasmid shuffling procedure based on the 5-FOAR selection permits the recovery of conditional lethal mutations in cloned genes that encode vital(More)
Candida albicans and Saccharomyces cerevisiae switch from a yeast to a filamentous form. In Saccharomyces, this switch is controlled by two regulatory proteins, Ste12p and Phd1p. Single-mutant strains, ste12/ste12 or phd1/phd1, are partially defective, whereas the ste12/ste12 phd1/phd1 double mutant is completely defective in filamentous growth and is(More)
We characterized two genes, FUS1 and FUS2, which are required for fusion of Saccharomyces cerevisiae cells during conjugation. Mutations in these genes lead to an interruption of the mating process at a point just before cytoplasmic fusion; the partition dividing the mating pair remains undissolved several hours after the cells have initially formed a(More)
Molecular analysis of the KAR1 gene of yeast has shown that it is required for both mitosis and conjugation. The gene was originally identified by mutations that prevent nuclear fusion. By in vitro mutagenesis and gene replacement we have demonstrated that the gene is an essential cell division cycle gene. Temperature-sensitive mutant strains show defects(More)
Diploid Saccharomyces cerevisiae strains starved for nitrogen undergo a developmental transition from a colonial form of growth to a filamentous pseudohyphal form. This dimorphism requires a polar budding pattern and elements of the MAP kinase signal transduction pathway essential for mating pheromone response in haploids. We report here that haploid(More)
A Candida albicans gene (CPH1) was cloned that encodes a protein homologous to Saccharomyces cerevisiae Ste12p, a transcription factor that is the target of the pheromone response mitogen-activated protein kinase cascade. CPH1 complements both the mating defect of ste12 haploids and the filamentous growth defect of ste12/ste12 diploids. Candida albicans(More)
Microarray-based gene expression analysis identified genes showing ploidy-dependent expression in isogenic Saccharomyces cerevisiae strains that varied in ploidy from haploid to tetraploid. These genes were induced or repressed in proportion to the number of chromosome sets, regardless of the mating type. Ploidy-dependent repression of some G1 cyclins can(More)