Learn More
The 434 repressor binds more tightly to OR1 than it does to OR3. The repressor makes several specific contacts with the symmetrically arrayed outer four base-pairs of the 14 base-pair site, and no specific contacts to the central six base-pairs. The sequence of the outer base-pairs of OR1 and OR3 differs only by an A-->G substitution at position 4 in one(More)
Induction of a lysogen of a lambdoid bacteriophage usually involves RecA-stimulated autoproteolysis of the bacteriophage repressor protein. Previous work on the phage repressors showed that the monomeric form of the protein is the target of RecA. Our previous work indicated that in the case of bacteriophage 434, virtually none of the repressor is present as(More)
The P22 c2 repressor protein (P22R) binds to DNA sequence-specifically and helps to direct the temperate lambdoid bacteriophage P22 to the lysogenic developmental pathway. We describe the 1.6 A X-ray structure of the N-terminal domain (NTD) of P22R in a complex with a DNA fragment containing the synthetic operator sequence [d(ATTTAAGATATCTTAAAT)]2. This(More)
The genes encoding Shiga toxin (stx), the major virulence factor of Shiga toxin-encoding Escherichia coli (STEC) strains, are carried on lambdoid prophages resident in all known STEC strains. The stx genes are expressed only during lytic growth of these temperate bacteriophages. We cloned the gene encoding the repressor of the Shiga toxin-encoding(More)
The repressor of phage 434 binds to six operator sites on the phage chromosome. A comparison of the sequences of these 14-base-pair (bp) operator sites reveals a striking pattern: at five of the six sites, the symmetrically arrayed outer eight base pairs (four in each half-site) are identical and the remaining site differs at only one position (Fig. 1b). In(More)
Laccase uses three types of Cu(II) sites to catalyze the reduction of O2 to H2O. Fluoride binds to the type 2 site. The effects of F- on the kinetics of O2 reduction were examined to determine the catalytic roles of the copper sites. Under steady-state conditions, F- rapidly inhibits the oxidation of dimethylphenylenediamine. Both reductant-dependent and(More)
Typical of many transcriptional regulatory proteins, the lambdoid bacteriophage repressors bind cooperatively to multiple sites on DNA. This cooperative binding is essential for establishment and maintenance of phage lysogeny. In the phage, two repressor homodimers, one bound at each of the adjacent operator sites, interact to form the tetramer that is(More)
Bacterially derived exotoxins kill eukaryotic cells by inactivating factors and/or pathways that are universally conserved among eukaryotic organisms. The genes that encode these exotoxins are commonly found in bacterial viruses (bacteriophages). In the context of mammals, these toxins cause diseases ranging from cholera to diphtheria to enterohemorrhagic(More)
The binding of proteins to specific sequences of DNA is an important feature of virtually all DNA transactions. Proteins recognize specific DNA sequences using both direct readout (sensing types and positions of DNA functional groups) and indirect readout (sensing DNA conformation and deformability). Previously we showed that the P22 c2 repressor N-terminal(More)
We performed two sets of in vitro selections to dissect the role of the -10 base sequence in determining the rate and efficiency with which Escherichia coli RNA polymerase-sigma(70) forms stable complexes with a promoter. We identified sequences that (i) rapidly form heparin-resistant complexes with RNA polymerase or (ii) form heparin-resistant complexes at(More)