Geraint Morton

Learn More
OBJECTIVES The aim of this study was to compare fully quantitative cardiovascular magnetic resonance (CMR) and positron emission tomography (PET) myocardial perfusion and myocardial perfusion reserve (MPR) measurements in patients with coronary artery disease (CAD). BACKGROUND Absolute quantification of myocardial perfusion and MPR with PET have proven(More)
Two-dimensional (2D) X-ray imaging is the dominant imaging modality for cardiac interventions. However, the use of X-ray fluoroscopy alone is inadequate for the guidance of procedures that require soft-tissue information, for example, the treatment of structural heart disease. The recent availability of three-dimensional (3D) trans-esophageal(More)
BACKGROUND The dual-bolus protocol enables accurate quantification of myocardial blood flow (MBF) by first-pass perfusion cardiovascular magnetic resonance (CMR). However, despite the advantages and increasing demand for the dual-bolus method for accurate quantification of MBF, thus far, it has not been widely used in the field of quantitative perfusion(More)
OBJECTIVES The goal of this study was to determine the diagnostic accuracy of dynamic 3-dimensional (3D) whole heart myocardial perfusion cardiovascular magnetic resonance (CMR) against invasively determined fractional flow reserve (FFR) and to establish the correlation between myocardium at risk defined by using the invasive Duke Jeopardy Score (DJS) and(More)
BACKGROUND In patients with stable coronary artery disease (CAD), decisions regarding revascularisation are primarily driven by the severity and extent of coronary luminal stenoses as determined by invasive coronary angiography. More recently, revascularisation decisions based on invasive fractional flow reserve (FFR) have shown improved event free(More)
BACKGROUND To determine the inter-study reproducibility of MR feature tracking (MR-FT) derived left ventricular (LV) torsion and torsion rates for a combined assessment of systolic and diastolic myocardial function. METHODS Steady-state free precession (SSFP) cine LV short-axis stacks were acquired at 9:00 (Exam A), 9:30 (Exam B), and 14:00 (Exam C) in 16(More)
BACKGROUND Cardiovascular Magnetic Resonance (CMR) myocardial perfusion imaging has the potential to evolve into a method allowing full quantification of myocardial blood flow (MBF) in clinical routine. Multiple quantification pathways have been proposed. However at present it remains unclear which algorithm is the most accurate. An isolated perfused,(More)
Introduction On high field MRI scanners uniform radio frequency (RF) excitation over the entire field-of-view (FOV) is often challenging with single-channel RF transmit coils. This may cause a reduction of image quality (e.g. shadowing artifacts). This problem is most pronounced in sequences that heavily rely on a homogenous magnetic field, such as steady(More)
BACKGROUND To test the hypothesis that point-of-care assays of platelet reactivity would demonstrate reduced response to antiplatelet therapy in patients who experienced Drug Eluting Stent (DES) ST whilst on dual antiplatelet therapy compared to matched DES controls. Whilst the aetiology of stent thrombosis (ST) is multifactorial there is increasing(More)
BACKGROUND Cardiovascular magnetic resonance myocardial feature tracking (CMR-FT) is a recently described method of post processing routine cine acquisitions which aims to provide quantitative measurements of circumferentially and radially directed ventricular wall strain. Inter-study reproducibility is important for serial assessments however has not been(More)