Ger J. A. Arkesteijn

Learn More
We provide a protocol for a high-resolution flow cytometry-based method for quantitative and qualitative analysis of individual nano-sized vesicles released by cells, as developed and previously described by our group. The method involves (i) bright fluorescent labeling of cell-derived vesicles and (ii) flow cytometric analysis of these vesicles using an(More)
Regulatory T cells (Treg) are regarded essential components for maintenance of immune homeostasis. Especially CD4(+)CD25(high) T cells are considered to be important regulators of immune reactivity. In humans and rodents these natural Treg are characterized by their anergic nature, defined as a non-proliferative state, suppressive function and expression of(More)
We report on three unrelated mentally disabled patients, each carrying a de novo balanced translocation that truncates the autism susceptibility candidate 2 (AUTS2) gene at 7q11.2. One of our patients shows relatively mild mental retardation; the other two display more profound disorders. One patient is also physically disabled, exhibiting urogenital and(More)
Despite a rapidly accumulating clinical experience with autologous stem cell transplantation (ASCT) as a treatment for severe refractory autoimmune disease, data on the mechanisms by which ASCT induces immune tolerance are still very scarce. In this study it is shown that ASCT restores immunologic self-tolerance in juvenile idiopathic arthritis (JIA) via 2(More)
The Suidae and the Dicotylidae (or Tayassuidae) are related mammalian families, both belonging to the artiodactyl suborder Suiformes, which diverged more than 37 million years ago. Cross-species chromosome painting was performed between the domestic pig (Sus scrofa; 2n = 38), a representative of the Suidae, and two species of the Dicotylidae: the collared(More)
BACKGROUND Chromosome banding techniques and in situ hybridization reveal the majority of chromosomal aberrations. However, difficulties remain in cases of highly contracted chromosomes, poor quality of the metaphases or the presence of markers with the involvement of several chromosomes. Here, it is demonstrated that reverse painting can be applied(More)
Balanced chromosome rearrangements (BCRs) can cause genetic diseases by disrupting or inactivating specific genes, and the characterization of breakpoints in disease-associated BCRs has been instrumental in the molecular elucidation of a wide variety of genetic disorders. However, mapping chromosome breakpoints using traditional methods, such as in situ(More)
In a previous study of ours, DNA libraries specific for Chinese hamster chromosomes 1, 2, 3, 5, 6, 7, and 8 were constructed by single laser flow sorting and the linker adapter PCR method. Since a single laser flow sorting of chromosomes is based on chromosome size, it is difficult to separate chromosomes of equal size, such as chromosome 3 and the X(More)
Despite the recent completion of the human genome project, the mapping of disease-related chromosomal translocation breakpoints and genes has remained laborious. Here, we describe a novel and rapid procedure to map such translocation breakpoints using flow-sorted chromosomes in combination with array-based comparative genomic hybridization (arrayCGH). To(More)
In this study we describe the establishment of a leukemic cell line (BNML-CL/ara-C), originating from the 1-beta-D-arabinofuranosylcytosine (ara-C)-resistant brown Norway rat myelocytic leukemia model (BNML/ara-C), that retains the in vivo generated ara-C resistance. Its biological and biochemical characteristics have been compared with a cell line, derived(More)