Learn More
Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable(More)
Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human(More)
Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets)(More)
We report comprehensive, demonstrably contaminant-free measurements of binary particle formation rates by sulfuric acid and water for neutral and ion-induced pathways conducted in the European Organization for Nuclear Research Cosmics Leaving Outdoor Droplets chamber. The recently developed Atmospheric Pressure interface-time of flight-mass spectrometer was(More)
Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics(More)
Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H 2 SO 4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as(More)
Sulfuric acid is an important gas influencing atmospheric new particle formation (NPF). Both the binary (H 2 SO 4 –H 2 O) system and the ternary system involving ammonia (H 2 SO 4 –H 2 O–NH 3) may be important in the free tro-posphere. An essential step in the nucleation of aerosol particles from gas-phase precursors is the formation of a dimer, so an(More)
The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the(More)
  • 1