Learn More
In this paper, we present the computational tools and a hardware prototype for 3D face recognition. Full automation is provided through the use of advanced multistage alignment algorithms, resilience to facial expressions by employing a deformable model framework, and invariance to 3D capture devices through suitable preprocessing steps. In addition,(More)
From a user’s perspective, face recognition is one of the most desirable biometrics, due to its non-intrusive nature; however, variables such as face expression tend to severely affect recognition rates. We have applied to this problem our previous work on elastically adaptive deformable models to obtain parametric representations of the geometry of(More)
A novel method for the reconstruction of 3D shape and texture from Integral Photography (IP) images is presented. Sharing the same principles with stereoscopic-based object reconstruction, it offers increased robustness to noise and occlusions due to the unique characteristics of IP images. A coarse to fine approach is used, employing a novel grid(More)
As the size of the available collections of 3D objects grows, database transactions become essential for their management with the key operation being retrieval (query). Large collections are also precategorized into classes so that a single class contains objects of the same type (e.g., human faces, cars, four-legged animals). It is shown that general(More)
A 3D landmark detection method for 3D facial scans is presented and thoroughly evaluated. The main contribution of the presented method is the automatic and pose-invariant detection of landmarks on 3D facial scans under large yaw variations (that often result in missing facial data), and its robustness against large facial expressions. Three-dimensional(More)
It is becoming increasingly important to be able to credential and identify authorized personnel at key points of entry. Such identity management systems commonly employ biometric identifiers. In this paper, we present a novel multimodal facial recognition approach that employs data from both visible spectrum and thermal infrared sensors. Data from multiple(More)
The availability of 3D facial datasets is rapidly growing, mainly as a result of medical and biometric applications. These applications often require the retrieval of specific facial areas (such as the nasal region). The most crucial step in facial region retrieval is the detection of key 3D facial landmarks (e.g., the nose tip). A key advantage of 3D(More)
In this paper, we present a new method for bidirectional relighting for 3D-aided 2D face recognition under large pose and illumination changes. During subject enrollment, we build subject-specific 3D annotated models by using the subjects' raw 3D data and 2D texture. During authentication, the probe 2D images are projected onto a normalized image space(More)
As the accuracy of biometrics improves, it is getting increasingly hard to push the limits using a single modality. In this paper, a unified approach that fuses three-dimensional facial and ear data is presented. An annotated deformable model is fitted to the data and a geometry image is extracted. Wavelet coefficients are computed from the geometry image(More)
The increase in availability and use of digital three-dimensional (3D) synthetic or scanned objects, makes necessary the availability of basic database operations , such as retrieval. Retrieval methods are based on the extraction of a compact shape descriptor; the challenge is to design a shape descriptor which describes the original object in sufficient(More)