Georgina Ponce

Learn More
HSP101 belongs to the ClpB protein subfamily whose members promote the renaturation of protein aggregates and are essential for the induction of thermotolerance. We found that maize HSP101 accumulated in mature kernels in the absence of heat stress. At optimal temperatures, HSP101 disappeared within the first 3 days after imbibition, although its levels(More)
In this paper we discuss recent work on the physiological, molecular, and mechanical mechanisms that underlie the capacity of root caps to modulate the properties of the rhizosphere and thereby foster plant growth and development. The root cap initially defines the rhizosphere by its direction of growth, which in turn occurs in response to gradients in soil(More)
Root caps (RCs) are the terminal tissues of higher plant roots. In the present study the factors controlling RC size, shape and structure were examined. It was found that this control involves interactions between the RC and an adjacent population of slowly dividing cells, the quiescent centre, QC. Using the polar auxin transport inhibitor(More)
The survival of terrestrial plants depends upon the capacity of roots to obtain water and nutrients from the soil. Directed growth of roots in relation to a gradient in moisture is called hydrotropism and begins in the root cap with the sensing of the moisture gradient. Even though the lack of sufficient water is the single-most important factor affecting(More)
For most plants survival depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Because land plants cannot escape environmental stress they use developmental solutions to remodel themselves in order to better adapt to the new conditions. The primary site for perception of underground signals is the root cap(More)
The quiescent center is viewed as an architectural template in the root apical meristem of all angiosperm and gymnosperm root tips. In roots of Arabidopsis thaliana (L.) Heynh., the quiescent center inhibits differentiation of contacting initial cells and maintains the surrounding initial cells as stem cells. Here, the role of the quiescent center in the(More)
Directed growth of roots in relation to a moisture gradient is called hydrotropism. The no hydrotropic response (nhr1) mutant of Arabidopsis lacks a hydrotropic response, and shows a stronger gravitropic response than that of wild type (wt) in a medium with an osmotic gradient. Local application of abscisic acid (ABA) to seeds or root tips of nhr1 increased(More)
Hydrotropism, the differential growth of plant roots directed by a moisture gradient, is a long recognized, but not well-understood plant behavior. Hydrotropism has been characterized in the model plant Arabidopsis. Previously, it was postulated that roots subjected to water stress are capable of undergo water-directed tropic growth independent of the(More)
Roots are highly plastic and can acclimate to heterogeneous and stressful conditions. However, there is little knowledge of the effect of moisture gradients on the mechanisms controlling root growth orientation and branching, and how this mechanism may help plants to avoid drought responses. The aim of this study was to isolate mutants of Arabidopsis(More)
Nodal roots (NRs) constitute the prevalent root system of adult maize plants. NRs emerge from stem nodes located below or above ground, and little is known about their inducing factors. Here, it is shown that precocious development of NRs at the coleoptilar node (NRCNs) occurred in maize seedlings when: (i) dark grown and stimulated by the concurrent action(More)