Georgiana Surpateanu

Learn More
The influence of the P1 amino acid on the substrate selectivity, the catalytic parameters K(m) and k(cat), of carboxypeptidase M (CPM) (E.C. 3.4.17.12) was systematically studied using a series of benzoyl-Xaa-Arg substrates. CPM had the highest catalytic efficiency (k(cat)/K(m)) for substrates with Met, Ala and aromatic amino acids in the penultimate(More)
Hydroxyapatite (HAP), a highly specific component of bone tissue, is the main target in order to impart osteotropicity. Bone targeted nanoparticles can increase the strength of the interaction with HAP through multivalency and thus constitute a valuable strategy in the therapeutics of skeletal diseases. PBLG10k-b-PEG6k-alendronate nanoparticles (~ 75 nm)(More)
Exposure to urban airborne particulate matter (PM) has been associated with adverse health effects. The majority of research articles published on air pollution PM relate to PM10. However, increasing emphasis and stringent regulations have been placed on PM2.5. The mechanisms for PM-induced adverse health effects are not well understood, but inflammation(More)
A set of small nonpeptidic diaryl phosphonate inhibitors was prepared. Some of these inhibitors show potent and highly selective irreversible uPA inhibition. The biochemical and modeling data prove that the combination of a benzylguanidine moiety with a diaryl phosphonate ester results in optimized molecules for derivatizing the serine alcohol in the uPA(More)
This paper describes the structure-activity relationship in a series of tripeptidyl diphenyl phosphonate irreversible urokinase plasminogen activator (uPA) inhibitors, originally derived from an arginyltripeptide. uPA is considered an interesting target in anticancer drug design. The selectivity of these inhibitors for uPA is enhanced by the optimization of(More)
The screening of the ICSN chemical library on various disease-relevant protein kinases led to the identification of natural flavonoidal alkaloids of unknown configuration as potent inhibitors of the CDK1 and CDK5 kinases. We thus developed an efficient and modular synthetic strategy for their preparation and that of analogues in order to determine the(More)
Electrochemical formation and dissolution of passive films on niobium surfaces were studied in various concentrations of KOH solutions using the open-circuit potential and potentiodynamic techniques. Potentiodynamic I/E profiles indicated that the electrolyte concentration strongly affects the active/passive transition, as well as the values of the(More)
Nucleoside hydrolase (NH) is a key enzyme in the purine salvage pathway. The purine specificity of the IAG-NH from Trypanosoma vivax is at least in part due to cation-pi-stacking interactions. Guanidinium ions can be involved in cation-pi-stacking interactions, therefore a series of guanidino-alkyl-ribitol derivatives were synthesized in order to examine(More)
A key enzyme within the purine salvage pathway of parasites, nucleoside hydrolase, is proposed as a good target for new antiparasitic drugs. We have developed N-arylmethyl-iminoribitol derivatives as a novel class of inhibitors against a purine specific nucleoside hydrolase from Trypanosoma vivax. Several of our inhibitors exhibited low nanomolar activity,(More)
Acidity constants of benzotriazolium salts and the corresponding ylides represent quantitative parameters for the estimation of their stability. Experimental pKa values were determined using UV-spectrometry. For each species involved in acid-base equilibria, the theoretical total energies Et, solvatation energies Es and UV-VIS electronic transitions were(More)