Georgia C Papaefthymiou

Learn More
Quantum dots (QDs) and magnetic nanoparticles (MPs) are of interest for biological imaging, drug targeting, and bioconjugation because of their unique optoelectronic and magnetic properties, respectively. To provide for water solubility and biocompatibility, QDs and MPs were encapsulated within a silica shell using a reverse microemulsion synthesis. The(More)
BACKGROUND Mössbauer and magnetization measurements, singly or in combination, extract detailed information on the microscopic or internal magnetism of iron-based materials and their macroscopic or bulk magnetization. The combination of the two techniques affords a powerful investigatory probe into spin relaxation processes of nanosize magnetic systems. The(More)
Ferritins are ubiquitous iron storage and detoxification proteins distributed throughout the plant and animal kingdoms. Mammalian ferritins oxidize and accumulate iron as a ferrihydrite mineral within a shell-like protein cavity. Iron deposition utilizes both O(2) and H(2)O(2) as oxidants for Fe(2+) where oxidation can occur either at protein ferroxidase(More)
Biomineralization of the ferritin iron core involves a complex series of events in which H(2)O(2) is produced during iron oxidation by O(2) at a dinuclear centre, the 'ferroxidase site', located on the H-subunit of mammalian proteins. Rapid-freeze quench Mössbauer spectroscopy was used to probe the early events of iron oxidation and mineralization in(More)
A novel polyiron oxo complex, [FeIII4FeII8(O)2(OCH3)18(O2CCH3)6(CH3OH) 4.67] (1), has been prepared from ferrous acetate and lithium methoxide in methanol by slow addition of dioxygen. The three-dimensional close-packed layered structure found in 1 closely mimics that proposed for the inorganic core in the iron storage protein ferritin. The Mössbauer(More)
Mammalian ferritin from horse spleen undergoes an electrochemical or chemical reduction reaction in which each iron atom present is reduced by one electron (2300 electrons per ferritin molecule containing 2300 Fe3+ ions). Midpoint potentials of -190 mV, -310 mV, and -416 mV were determined at pH 7.0, 8.0, and 9.0. This variation of potential with pH(More)
The early redox events involved in iron reduction and mobilization in mammalian ferritin have been investigated by several techniques. Sedimentation velocity measurements of ferritin samples with altered core sizes, prepared by partial reduction and Fe2+ chelation, suggest two different events occur during iron loss from the ferritin core. Reductive optical(More)
Fe2+ binding to both apo- and holo- bacterial ferritin from Azotobacter vinelandii (AVBF) was measured as a function of pH under carefully controlled anaerobic conditions. Fe2+ binding to apo-AVBF is strongly pH dependent with 25 Fe2+ ions/apo-AVBF binding tightly at pH 5.5 and over 150 Fe2+/apo-AVBF at pH 9.0. Holo-AVBF gave a similar pH-dependent binding(More)
We have investigated the structural, magnetic, and electronic properties of nonstoichiometric iron oxide nanocrystals prepared by decomposition of iron(II) and iron(0) precursors in the presence of organic solvents and capping groups. The highly uniform, crystalline, and monodisperse nanocrystals that were produced enabled a full structural and(More)
As-prepared, single-crystalline bismuth ferrite nanoparticles show strong size-dependent magnetic properties that correlate with: (a) increased suppression of the known spiral spin structure (period length of approximately 62 nm) with decreasing nanoparticle size and (b) uncompensated spins and strain anisotropies at the surface. Zero-field-cooled and(More)