Georgia Benkart

Learn More
This book is intended to serve both as an introduction and a reference to spectral and inverse spectral theory of Jacobi operators (i.e., second order symmetric difference operators) and applications of these theories to the Toda and Kac-van Moerbeke hierarchy. Starting from second order difference equations we move on to self-adjoint operators and develop(More)
We deene and characterize switching, an operation that takes two tableaux sharing a common border and \moves them through each other" giving another such pair. Several authors, including James and Kerber, Remmel, Haiman, and Shimozono, have deened switching operations; however, each of their operations is somewhat diierent from the rest and each imposes a(More)
The algebra generated by the down and up operators on a differential partially ordered set (poset) encodes essential enumerative and structural properties of the poset. Motivated by the algebras generated by the down and up operators on posets, we introduce here a family of infinite-dimensional associative algebras called down-up algebras. We show that(More)
We determine the finite-dimensional simple modules for two-parameter quantum groups corresponding to the general linear and special linear Lie algebras gl n and sln, and give a complete reducibility result. These quantum groups have a natural n-dimensional module V . We prove an analogue of Schur-Weyl duality in this setting: the centralizer algebra of the(More)
We investigate two-parameter quantum groups corresponding to the general linear and special linear Lie algebras gln and sln. We show that these quantum groups can be realized as Drinfel’d doubles of certain Hopf subalgebras with respect to Hopf pairings. Using the Hopf pairing, we construct a corresponding R-matrix. The quantum groups have a natural(More)