Learn More
Bacterial L-asparaginases (E.C. have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia. L-asparaginase from Erwinia carotovora NCYC 1526 (ErA) was cloned and expressed in E. coli. The enzyme was purified to homogeneity by a two-step procedure comprising cation-exchange chromatography and affinity(More)
A lepidopteran insect cell-based expression system has been employed to express three Anopheles gambiae odorant receptors (ORs), OR1 and OR2, which respond to components of human sweat, and OR7, the ortholog of Drosophila's OR83b, the heteromerization partner of all functional ORs in that system. With the aid of epitope tagging and specific antibodies,(More)
Bacterial L-asparaginases (L-ASNases) catalyze the conversion of L-asparagine to L-aspartate and ammonia. In the present work, we report the cloning and expression of L-asparaginase from Erwinia chrysanthemi 3937 (ErL-ASNase) in Escherichia coli BL21(DE3)pLysS. The enzyme was purified to homogeneity in a single-step procedure involving cation exchange(More)
Glutathione S-transferases (GSTs) are a heterogeneous family of enzymes that catalyse the conjugation of glutathione (GSH) to electrophilic sites on a variety of hydrophobic substrates. In the present study three amino acid residues (Trp12, Phe35 and Ile118) of the xenobiotic binding site (H-site) of maize GST I were altered in order to evaluate their(More)
Bacterial L-ASNases (L-asparaginases) catalyse the conversion of L-asparagine into L-aspartate and ammonia, and are widely used for the treatment of ALL (acute lymphoblastic leukaemia). In the present paper, we describe an efficient approach, based on protein chemistry and protein engineering studies, for the construction of trypsin-resistant PEGylated(More)
L-asparaginase (EC, L-ASNase) catalyses the hydrolysis of l-Asn, producing L-Asp and ammonia. This enzyme is an anti-neoplastic agent; it is used extensively in the chemotherapy of acute lymphoblastic leukaemia. In this study, we describe the use of in vitro directed evolution to create a new enzyme variant with improved thermal stability. A library(More)
BACKGROUND Diacylhydrazine (DAH) analogues have been developed successfully as a new group of insect growth regulators, called ecdysone agonists or moulting accelerating compounds. These DAHs have been shown to manifest their toxicity via interaction with the ecdysone receptor (EcR) in susceptible insects, as does the natural insect moulting hormone(More)
S-(2,3-Dichlorotriazinyl)glutathione (SDTG) was synthesized and shown to be an effective alkylating affinity label for recombinant maize glutathione S-transferase I (GST I). Inactivation of GST I by SDTG at pH 6.5 followed biphasic pseudo-first-order saturation kinetics. The biphasic kinetics can be described in terms of a fast initial phase of inactivation(More)
BACKGROUND Dibenzoylhydrazine analogues have been developed successfully as a new group of insect growth regulators, called ecdysone agonists or moulting accelerating compounds. A notable feature is their high activity against lepidopteran insects, raising the question as to whether species-specific analogues can be isolated. In this study, the specificity(More)
A library of Tau class GSTs (glutathione transferases) was constructed by DNA shuffling using the DNA encoding the Glycine max GSTs GmGSTU2-2, GmGSTU4-4 and GmGSTU10-10. The parental GSTs are >88% identical at the sequence level; however, their specificity varies towards different substrates. The DNA library contained chimaeric structures of alternated(More)