Learn More
5-Fluorouracil (5-FU) is the most common chemotherapeutic agent used in the treatment of colorectal cancer, yet objective response rates are low. Recently, camptothecin (CPT) has emerged as an effective alternative therapy. Decisive means to determine treatment, based on the likelihood of response to each of these agents, could greatly enhance the(More)
Colonic epithelial cells undergo cell cycle arrest, lineage specific differentiation, and apoptosis, as they migrate along the crypt axis toward the lumenal surface. The Caco-2 colon carcinoma cell line models many of these phenotypic changes, in vitro. We used this model system and cDNA microarray analysis to characterize the genetic reprogramming that(More)
The platinum compound oxaliplatin has been shown to be an effective chemotherapeutic agent for the treatment of colorectal cancer. In this study, we investigate the molecular mechanisms of action of oxaliplatin to identify means of predicting response to this agent. Exposure of colon cancer cells to oxaliplatin resulted in G2/M arrest and apoptosis.(More)
Sulindac, a nonsteroidal anti-inflammatory drug, inhibits intestinal tumorigenesis in humans and rodents. Sulindac induced complex alterations in gene expression, but only 0.1% of 8063 sequences assayed were altered similarly by the drug in rectal biopsies of patients treated for 1 month and during response of colonic cells in culture. Among these changes(More)
A defined rodent "new Western diet" (NWD), which recapitulates intake levels of nutrients that are major dietary risk factors for human colon cancer, induced colonic tumors when fed to wild-type C57Bl/6 mice for 1.5 to 2 years from age 6 weeks (two-thirds of their life span). Colonic tumors were prevented by elevating dietary calcium and vitamin D(3) to(More)
The proto-oncogene c-Myc is overexpressed in 70% of colorectal tumours and can modulate proliferation and apoptosis after cytotoxic insult. Using an isogenic cell system, we demonstrate that c-Myc overexpression in colon carcinoma LoVo cells resulted in sensitisation to camptothecin-induced apoptosis, thus identifying c-Myc as a potential marker predicting(More)
Histone deacetylase inhibitors (HDACi) induce growth arrest and apoptosis in colon cancer cells and are being considered for colon cancer therapy. The underlying mechanism of action of these effects is poorly defined with both transcription-dependent and -independent mechanisms implicated. We screened a panel of 30 colon cancer cell lines for sensitivity to(More)
Colon carcinoma cells overexpress c-myc due to defective Wnt signaling, but only patients whose tumors have an amplified c-myc gene show improved disease-free and overall survival in response to 5-fluoruracil (5FU). Here we show that in two colon carcinoma cell lines that do not have an amplified c-myc gene but differ in their p53 status, high c-myc levels(More)
As human colorectal cancer (CRC) cells metastasize to distant sites, they are susceptible to detachment-induced cell death or anoikis - a form of apoptosis that occurs when anchorage-dependent CRC cells go into suspension. Our goal was to identify whether tumor necrosis factor receptor apoptosis-inducing ligand (TRAIL) receptors mediate anoikis in human CRC(More)
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a negative regulator of phosphatidylinositol 3-kinase (PI3K) signaling that is frequently inactivated in colorectal cancer through mutation, loss of heterozygosity, or epigenetic mechanisms. The aim of this study was to determine the effect of intestinal-specific PTEN inactivation on(More)