Georgi P. Gladyshev

Learn More
The principle of substance stability – the feedback principle – is applicable to all biological systems. It boils down for different temporal hierarchies to the following: during the formation (self-assembly) of the most thermodynamically stable structures at the highest hierarchical level (j), e.g., the supramolecular level, in accordance with the second(More)
Life in the universe originated and is evolving in accordance with the general laws of nature, specifically, the law of temporal hierarchies and the second law of thermodynamics. "In addition to entropy there may well exist other "one-way" functions which add to the overall description of the world as temporal development."
The findings of macrothermodynamics (supramolecular thermodynamics) of quasi-closed systems and the published data about the variation of the chemical composition of living organisms in ontogeny confirm the thermodynamic tendency of aging processes. According to the thermodynamic theory, the specific value of the Gibbs function of the formation of(More)
The work presents experimental confirmation of the author's thermodynamic theory of the biological evolution and aging of living beings. It shows that using the law of temporal hierarchies and the second law of thermodynamics, it is easy to describe biological evolution (phylogeny) and ontogeny in terms of equilibrium hierarchical thermodynamics. This(More)
A macrothermodynamic model of evolution of the supramolecular structures and chemical composition of living objects during ontogenesis and at long-term stages of general biological evolution is presented. A study of quasiclosed (thermodynamically and kinetically) systems, phases of the biomass supramolecular structures, enables a conclusion on the(More)
The law of temporal hierarchies of the biological world allows us to pick out of the biomass quasi-closed thermodynamic systems with a given hierarchy. It has been established, that the use of this law of Nature as applied to supramolecular structures of organisms allows us the opportunity of using the methods of equilibrium supramolecular thermodynamics in(More)
The creation of structural hierarchies in open natural biosystems within the framework of quasi-closed systems is investigated by the methods of hierarchic thermodynamics (thermostatics). During the evolution of natural open systems, every higher hierarchic level j appears as a consequence of thermodynamic self-organization (self-assembly) of the structures(More)