Learn More
Mounting evidence indicates cyclin-dependent kinase (CDK) inhibitors (CKIs) of the Cip/Kip family, including p57(Kip2) and p27(Kip1), control not only cell cycle exit but also corticogenesis. Nevertheless, distinct activities of p57(Kip2) remain poorly defined. Using in vivo and culture approaches, we show p57(Kip2) overexpression at E14.5-15.5 elicits(More)
During cerebral cortex development, precise control of precursor cell cycle length and cell cycle exit is required for balanced precursor pool expansion and layer-specific neurogenesis. Here, we defined the roles of cyclin-dependent kinase inhibitor (CKI) p57(KIP2), an important regulator of G1 phase, using deletion mutant mice. Mutant mice displayed(More)
Amyloid-β 1-42 (Aβ42) oligomers are synaptotoxic for excitatory cortical and hippocampal neurons and might play a role in early stages of Alzheimer's disease (AD) progression. Recent results suggested that Aβ42 oligomers trigger activation of AMP-activated kinase (AMPK), and its activation is increased in the brain of patients with AD. We show that(More)
Sulfhydryl oxidases belonging to the FAD-dependent sulfhydryl oxidase/quiescin Q6 family were previously reported in rat peripheral organs but they were not detected in brain. In the present study, by using reverse transcription-polymerase chain reaction and northern blot analysis, we clearly show an ubiquitous expression of the gene in brain; moreover,(More)
The expression of the rat quiescin sulfhydryl oxidase (rQSOX) and its putative regulation by estrogens were investigated in the adenohypophysis. Immunohistochemical observations revealed that rQSOX protein is abundantly expressed throughout the anterior lobe of the pituitary, and can be found in almost all the different cell populations. However, as shown(More)
Mammalian Augmenter of Liver Regeneration protein (ALR) was first identified as a secondary growth factor involved in liver regeneration. Its sulfhydryl oxidase activity and involvement in iron homeostasis have been recently demonstrated. ALR is expressed in a broad range of peripheral organs, and initial experiments gave also evidence for the occurrence of(More)
Rat quiescin/sulphydryl oxidase (rQSOX) introduces disulphide bridges into peptides and proteins with the reduction of molecular oxygen to hydrogen peroxide. Its occurrence has been previously highlighted in a wide range of organs by reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analyses, methods that have provided information(More)
The spatiotemporal pattern of distribution of the sulfhydryl oxidase QSOX throughout ontogeny was mapped in rat brain using immunohistochemistry. The enzyme was detected on embryonic day (E) 12 in the dawning mantle layer, but the adult-like pattern was acquired postnatally around day 30 (P30). Throughout ontogenesis, rQSOX was detected in immature and(More)
Flavoproteins of the quiescin/sulfhydryl oxidase (QSOX) family catalyze oxidation of peptide and protein thiols to disulfides with the reduction of oxygen to hydrogen peroxide. We report here the molecular cloning of a new putative sulfhydryl oxidase cDNA, rQSOX-L (GenBank Accession no ), from adult rat brain and its expression studied by RT-PCR, Northern(More)
The distribution of the sulfhydryl oxidase QSOX in the rat brain was mapped using immunohistochemistry. QSOX is specifically expressed by neurons throughout the rostrocaudal extent of the brain as well as in the spinal cord. Although a majority of neurons express QSOX, different intensities of labeling were observed depending on the area: the strongest(More)