Georges Audi

Learn More
This paper is centered on some historical aspects of nuclear masses, and their relations to major discoveries. Besides nuclear reactions and decays, the heart of mass measurements lies in mass spectrometry, the early history of which will be reviewed first. I shall then give a short history of the mass unit which has not always been defined as one twelfth(More)
Masses of the short-lived radionuclides 32Ar (T(1/2)=98 ms) and 33Ar (T(1/2)=173 ms) have been determined with the Penning trap mass spectrometer ISOLTRAP. Relative uncertainties of 6.0x10(-8) (deltam=1.8 keV) and 1.4x10(-8) (deltam=0.44 keV), respectively, have been achieved. At present, these new mass data serve as the most stringent test of the quadratic(More)
High-precision mass measurements on neutron-rich zinc isotopes (71m,72-81)Zn have been performed with the Penning trap mass spectrometer ISOLTRAP. For the first time, the mass of 81Zn has been experimentally determined. This makes 80Zn the first of the few major waiting points along the path of the astrophysical rapid neutron-capture process where(More)
Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly charged ions, using the TITAN facility at TRIUMF. Compared to singly charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb isotopes have been charge bred in an electron beam ion(More)
The decay energy of the superallowed beta decay 74Rb(beta+)74Kr was determined by direct Penning trap mass measurements on both the mother and the daughter nuclide using the time-of-flight resonance technique and was found to be Q=10 416.8(4.5) keV. The exotic nuclide 74Rb, with a half-life of only 65 ms, is the shortest-lived nuclide on which a(More)
The mass of one of the three major waiting points in the astrophysical rp process 72Kr was measured for the first time with the Penning trap mass spectrometer ISOLTRAP. The measurement yielded a relative mass uncertainty of deltam/m=1.2x10(-7) (deltam=8 keV). (73,74)Kr, also needed for astrophysical calculations, were measured with more than 1 order of(More)
The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30 < or = Z < or = 92) were obtained with a typical uncertainty of 30 microu. The masses of 114 nuclides were determined for the first time. The odd-even(More)
Isochronous mass spectrometry has been applied to neutron-deficient 58Ni projectile fragments at the HIRFL-CSR facility in Lanzhou, China. Masses of a series of short-lived T(z)=-3/2 nuclides including 41Ti, 45Cr, 49Fe, and 53Ni have been measured with a precision of 20-40 keV. The new data enable us to test for the first time the isobaric multiplet mass(More)
The masses of ten proton-rich nuclides, including the N=Z+1 nuclides ⁸⁵Mo and ⁸⁷Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical x-ray bursts. Surprisingly low(More)
Masses of ^{52g,52m}Co were measured for the first time with an accuracy of ∼10  keV, an unprecedented precision reached for short-lived nuclei in the isochronous mass spectrometry. Combining our results with the previous β-γ measurements of ^{52}Ni, the T=2, J^{π}=0^{+} isobaric analog state (IAS) in ^{52}Co was newly assigned, questioning the conventional(More)