Learn More
In some plant species, including Arabidopsis, fertilization induces the epidermal cells of the outer ovule integument to differentiate into a specialized seed coat cell type with a unique morphology and containing large quantities of polysaccharide mucilage (pectin). Such seed coat mucilage cells are necessary for neither viability nor germination under(More)
The Arabidopsis seed coat epidermis undergoes a complex process of differentiation that includes the biosynthesis and secretion of large quantities of pectinaceous mucilage, cytoplasmic rearrangement, and secondary cell wall biosynthesis. Mutations in MUM4 (MUCILAGE-MODIFIED4) lead to a decrease in seed coat mucilage and incomplete cytoplasmic(More)
In Arabidopsis, fertilization induces the epidermal cells of the outer ovule integument to differentiate into a specialized seed coat cell type producing extracellular pectinaceous mucilage and a volcano-shaped secondary cell wall. Differentiation involves a regulated series of cytological events including growth, cytoplasmic rearrangement, mucilage(More)
Variation in plant shoot structure may be described as occurring through changes within a basic unit, the metamer. Using this terminology, the apical meristem of Arabidopsis produces three metameric types sequentially: type 1, rosette; type 2, coflorescence-bearing with bract; and type 3, flower-bearing without bract. We describe a mutant of Arabidopsis,(More)
We have analyzed double mutants that combine late-flowering mutations at four flowering-time loci (FVE, FPA, FWA, and FT) with mutations at the LEAFY (LFY), APETALA1 (AP1), and TERMINAL FLOWER1 (TFL1) loci involved in the floral initiation process (FLIP). Double mutants between ft-1 or fwa-1 and lfy-6 completely lack flowerlike structures, indicating that(More)
Interactions between TALE (three-amino acid loop extension) homeodomain proteins play important roles in the development of both fungi and animals. Although in plants, two different subclasses of TALE proteins include important developmental regulators, the existence of interactions between plant TALE proteins has remained unexplored. We have used the yeast(More)
Ovule development in Arabidopsis involves the formation of three morphologically defined proximal-distal pattern elements. Integuments arise from the central pattern element. Analysis of Bell 1 (Bel 1) mutant ovules indicated that BEL1 was required for integument development. Cloning of the BEL1 locus reveals that it encodes a homeodomain transcription(More)
Seed coat development in Arabidopsis thaliana involves a complex pathway where cells of the outer integument differentiate into a highly specialized cell type after fertilization. One aspect of this developmental process involves the secretion of a large amount of pectinaceous mucilage into the apoplast. When the mature seed coat is exposed to water, this(More)
Abstract Ecotilling was used as a simple nucleotide polymorphism (SNP) discovery tool to examine DNA variation in natural populations of the western black cottonwood, Populus trichocarpa, and was found to be more efficient than sequencing for large-scale studies of genetic variation in this tree. A publicly available, live reference collection of P.(More)