Learn More
Past study of interspecific variation in the swimming speed of fishes has focused on internal physiological mechanisms that may limit the ability of locomotor muscle to generate power. In this paper, we approach the question of why some fishes are able to swim faster than others from a hydrodynamic perspective, using the technique of digital particle image(More)
A key evolutionary transformation of the locomotor system of ray-finned fishes is the morphological elaboration of the dorsal fin. Within Teleostei, the dorsal fin primitively is a single midline structure supported by soft, flexible fin rays. In its derived condition, the fin is made up of two anatomically distinct portions: an anterior section supported(More)
While experimental analyses of steady rectilinear locomotion in fishes are common, unsteady movement involving time-dependent variation in heading, speed and acceleration probably accounts for the greatest portion of the locomotor time budget. Turning maneuvers, in particular, are key elements of the unsteady locomotor repertoire of fishes and, by many(More)
Dorsal and anal fins are median fins located above and below the centre of mass of fishes, each having a moment arm relative to the longitudinal axis. Understanding the kinematics of dorsal and anal fins may elucidate how these fins are used in concert to maintain and change fish body position and yet little is known about the functions of these fins. Using(More)
Fishes moving through turbulent flows or in formation are regularly exposed to vortices. Although animals living in fluid environments commonly capture energy from vortices, experimental data on the hydrodynamics and neural control of interactions between fish and vortices are lacking. We used quantitative flow visualization and electromyography to show(More)
Fishes use multiple flexible fins in order to move and maintain stability in a complex fluid environment. We used a new approach, a volumetric velocimetry imaging system, to provide the first instantaneous three-dimensional views of wake structures as they are produced by freely swimming fishes. This new technology allowed us to demonstrate conclusively the(More)
Eels undulate a larger portion of their bodies while swimming than many other fishes, but the hydrodynamic consequences of this swimming mode are poorly understood. In this study, we examine in detail the hydrodynamics of American eels (Anguilla rostrata) swimming steadily at 1.4 L s(-1) and compare them with previous results from other fishes. We performed(More)
There are approximately 50 muscles that control tail fin shape in most teleost fishes, and although myotomal muscle function has been extensively studied, little work has been done on the intrinsic musculature that controls and shapes the tail. In this study we measured electrical activity in intrinsic tail musculature to determine if these muscles are(More)
a variable extent within different lineages of chordates, axial structures display a segmented organization. The segmented arrangement of the vertebrate axial skeleton is especially familiar since it is apparent in both fossil remains and in extant taxa. However, the presence of segmented axial musculature in non-vertebrate chordates, such as Branchiostoma(More)