George S. Taylor

Learn More
Magic is a &#8220;smart&#8221; layout system for integrated circuits. The user interface is based on a new design style called <italic>logs</italic>, which combines the efficiency of mask-level design with the flexibility of symbolic design. The system incorporates expertise about design rules and connectivity directly into the layout system in order to(More)
Reliable, low-latency channel communication between independent clock domains may be achieved using a combination of clock pausing techniques, self-calibrating delay lines and an asynchronous interconnect. Such a scheme can be used for point-to-point communication in a globally asynchronous locally synchronous (GALS) system, a possible methodology for(More)
Balanced asynchronous circuits have been touted as a superior replacement for conventional synchronous circuits. To assess these claims, we have designed, manufactured and tested an experimental asynchronous smart-card style device. In this paper we describe the tests performed and show that asynchronous circuits can provide better tamperresistance.(More)
Hardware for radix four division and radix two square root is shared in a processor designed to implement the proposed IEEE floating-point standard. The division hardware looks ahead to find the next quotient digit in parallel with the next partial remainder. An 8-bit ALU estimates the next remainder's leading bits. The quotient digit look-up table is(More)
The lipid second messenger phosphatidylinositol 3-phosphate [PI(3)P] plays a crucial role in intracellular membrane trafficking. We report here that myotubularin, a protein tyrosine phosphatase required for muscle cell differentiation, is a potent PI(3)P phosphatase. Recombinant human myotubularin specifically dephosphorylates PI(3)P in vitro.(More)
We demonstrate how 1-of-n encoded speed-independent circuits provide a good framework for constructing smart card functions that are resistant to side channel attacks and fault injection. A novel alarm propagation technique is also introduced. These techniques have been used to produce a prototype smart card chip: a 16-bit secure processor with Montgomery(More)
In human cancer, PTEN (Phosphatase and TENsin homolog on chromosome 10, also referred to as MMAC1 and TEP1) is a frequently mutated tumor suppressor gene. We have used the zebrafish as a model to investigate the role of Pten in embryonic development and tumorigenesis. The zebrafish genome encodes two pten genes, ptena and ptenb. Here, we report that both(More)
Protein tyrosine phosphatases (PTPs) are a diverse group of enzymes that contain a highly conserved active site motif, Cys-x5-Arg (Cx5R). The PTP superfamily enzymes, which include tyrosine-specific, dual specificity, low-molecular-weight, and Cdc25 phosphatases, are key mediators of a wide variety of cellular processes, including growth, metabolism,(More)
Delay-insensitive or unordered codes may be used to construct both robust asynchronous circuits and self-checking systems. The redundant nature of the coding scheme also provides the possibility of a balanced implementation, where the power dissipated is independent of the input data. We demonstrate how these characteristics may be exploited to construct(More)