George S. Laszlo

Learn More
Neurofibromatosis type I (NF1) is one of the most commonly inherited neurological disorders in humans, affecting approximately one in 4,000 individuals. NF1 results in a complex cluster of developmental and tumour syndromes that include benign neurofibromas, hyperpigmentation of melanocytes and hamartomas of the iris. Some NF1 patients may also show(More)
Src is a nonreceptor tyrosine kinase that coordinates responses to diverse soluble and adhesive signaling molecules and regulates cell proliferation, survival, differentiation and migration. Normally, Src activity is tightly regulated, and Src-catalyzed phosphorylation is counterbalanced by phosphotyrosine phosphatases. However, deregulated mutant Src(More)
A targeted disruption of the RIalpha isoform of protein kinase A (PKA) was created by using homologous recombination in embryonic stem cells. Unlike the other regulatory and catalytic subunits of PKA, RIalpha is the only isoform that is essential for early embryonic development. RIalpha homozygous mutant embryos fail to develop a functional heart tube at(More)
CD33 is a valid target for acute myeloid leukemia (AML) but has proven challenging for antibody-drug conjugates. Herein, we investigated the cellular determinants for the activity of the novel CD33/CD3-directed bispecific T-cell engager antibody, AMG 330. In the presence of T cells, AMG 330 was highly active against human AML cell lines and primary AML(More)
CD33 is a myeloid differentiation antigen with endocytic properties. It is broadly expressed on acute myeloid leukemia (AML) blasts and, possibly, some leukemic stem cells and has therefore been exploited as target for therapeutic antibodies for many years. The improved survival seen in many patients when the antibody-drug conjugate, gemtuzumab ozogamicin,(More)
Gemtuzumab ozogamicin (GO), an immunoconjugate between an anti-CD33 antibody and a calicheamicin-γ(1) derivative, induces remissions and improves survival in a subset of patients with acute myeloid leukemia (AML). As the mechanisms underlying GO and calicheamicin-γ(1) resistance are incompletely understood, we herein used flow cytometry-based single cell(More)
Members of the interleukin-6 (IL-6) family of cytokines exert their biological effects via binding to their cognate ligand-binding receptor subunit on a target cell. The subsequent recruitment of the common signal transducer glycoprotein 130 and activation of the JAK/STAT and SHP-2/Ras/mitogen-activated protein kinase (MAPK) pathways are responsible for the(More)
Phosphorylation-dependent protein ubiquitylation and degradation provides an irreversible mechanism to terminate protein kinase signaling. Here, we report that mammary epithelial cells require cullin-5-RING-E3-ubiquitin-ligase complexes (Cul5-CRLs) to prevent transformation by a Src-Cas signaling pathway. Removal of Cul5 stimulates growth-factor-independent(More)
Deregulated cytokine signaling is a characteristic feature of acute myeloid leukemia (AML), and expression signatures of cytokines and chemokines have been identified as a significant prognostic factor in this disease. Given this aberrant signaling, we hypothesized that expression of suppressor of cytokine signaling-2 (SOCS2), a negative regulator of(More)
Recent technological advances led to an appreciation of the genetic complexity of human acute myeloid leukemia (AML), but underlying progenitor cells remain poorly understood because their rarity precludes direct study. We developed a co-culture method integrating hypoxia, aryl hydrocarbon receptor inhibition and micro-environmental support via human(More)