George R. Wodicka

Learn More
Measurements of body sounds on the skin surface have been widely used in the medical field and continue to be a topic of current research, ranging from the diagnosis of respiratory and cardiovascular diseases to the monitoring of voice dosimetry. These measurements are typically made using light-weight accelerometers and/or air-coupled microphones attached(More)
With the emerging use of tracheal sound analysis to detect and monitor respiratory tract changes such as those found in asthma and obstructive sleep apnea, there is a need to link the attributes of these easily measured sounds first to the underlying anatomy, and then to specific pathophysiology. To begin this process, we have developed a model of the(More)
Several clinical and ambulatory settings necessitate respiratory monitoring without a mouthpiece or facemask. Several studies have demonstrated the utility of breathing sound measurements performed on the chest or neck to detect airflow. However, there are limitations to skin surface measurements, including susceptibility to external noise and transducer(More)
Breath sounds heard with a stethoscope over homologous sites of both lungs in healthy subjects are presumed to have similar characteristics. Passively transmitted sounds introduced at the mouth, however, are known to lateralise, with right-over-left dominance in power at the anterior upper chest. Both spontaneous breath sounds and passively transmitted(More)
Sensors used for lung sound research are generally designed by the investigators or adapted from devices used in related fields. Their relative characteristics have never been defined. We employed an artificial chest wall with a viscoelastic surface and a white noise signal generator as a stable source of sound to compare the frequency response and pulse(More)
The analysis of breathing sounds measured over the extrathoracic trachea offers a noninvasive technique to monitor obstructions of the respiratory tract. Essential to development of this technique is a quantitative understanding of how such tracheal sounds are related to the underlying tract anatomy, airflow, and disease-induced obstructions. In this study,(More)
Sonic noise transmission from the mouth to six sites on the posterior chest wall is measured in 11 healthy adult male subjects at resting lung volume. The measurement sites are over the upper, middle and lower lung fields and are symmetric about the spine. The ratios of transmitted sound power to analogous sites over the right (R) and left (L) lung fields(More)
The frequency-dependent propagation time, or phase delay tau (f), of sonic noise transmission from the trachea to the chest wall was estimated over the 100-600 Hz frequency range using a phase estimation technique from measurements performed on eight healthy subjects. Since tau (f) can be greater than one period of the input signal at frequencies greater(More)
Different source-related factors can lead to vocal fold instabilities and bifurcations referred to as voice breaks. Nonlinear coupling in phonation suggests that changes in acoustic loading can also be responsible for this unstable behavior. However, no in vivo visualization of tissue motion during these acoustically induced instabilities has been reported.(More)