George R. Uhl

Learn More
Morphine produces analgesia at opiate receptors expressed in nociceptive circuits. mu, delta, and kappa opiate receptor subtypes are expressed in circuits that can modulate nociception and receive inputs from endogenous opioid neuropeptide ligands. The roles played by each receptor subtype in nociceptive processing in drug-free and morphine-treated states(More)
Cocaine and methylphenidate block uptake by neuronal plasma membrane transporters for dopamine, serotonin, and norepinephrine. Cocaine also blocks voltage-gated sodium channels, a property not shared by methylphenidate. Several lines of evidence have suggested that cocaine blockade of the dopamine transporter (DAT), perhaps with additional contributions(More)
The human dopamine transporter (DAT1) gene is localized to chromosome 5p15.3 by in situ hybridization and PCR amplification of rodent somatic cell hybrid DNA. Analysis of a 40-bp repeat in the 3' untranslated region of the message revealed variable numbers of the repeat ranging from 3 to 11 copies. These results will aid in the investigation of a role for(More)
Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless, we now describe expression of CB2-receptor-like(More)
Polar amino acids lying within three hydrophobic regions of the dopamine transporter (DAT) are analogous to those important for ligand recognition by catecholamine receptors. Possible functional significance of these amino acids was examined by expressing DAT cDNAs mutated in these polar residues. Replacement of aspartate at position 79 with alanine,(More)
Cocaine blocks uptake by neuronal plasma membrane transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET). Cocaine reward/reinforcement has been linked to actions at DAT or to blockade of SERT. However, knockouts of neither DAT, SERT, or NET reduce cocaine reward/reinforcement, leaving substantial uncertainty about cocaine's molecular(More)
A number of lines of evidence make the gene that encodes the G-protein-coupled CB1/Cnr1 receptor a strong candidate to harbor variants that might contribute to individual differences in human addiction vulnerability. The CB1/Cnr1 receptor is the major brain site at which cannabinoid marijuana constituents are psychoactive as well as the principal brain(More)
Results from studies using molecular and genetic methods in humans and rodents suggest that brain-derived neurotrophic factor (BDNF) is involved in the behavioral effects of abused drugs, making understanding of its genomic structure and regulation of substantial interest. Recently, we have reported that the human BDNF gene contains seven upstream exons(More)
Mu opioid receptors are subject to phosphorylation and desensitization through actions of at least two distinct biochemical pathways: agonist-dependent mu receptor phosphorylation and desensitization induced by a biochemically distinct second pathway dependent on protein kinase C activation (1). To better understand the nature of the agonist-induced mu(More)
In addition to mediating several physiological functions, nitric oxide (NO) has been implicated in the cytotoxicities observed following activation of macrophages or excess stimulation of neurons by glutamate. We extend our previous observations of glutamate-stimulated, NO-mediated neurotoxicity in primary cultures of rat fetal cortical, striatal, and(More)