George Papadakis

Learn More
DNA bending plays a significant role in many biological processes, such as gene regulation, DNA replication, and chromosomal packing. Understanding how such processes take place and how they can, in turn, be regulated by artificial agents for individual oriented therapies is of importance to both biology and medicine. In this work, we describe the(More)
Direct biosensors are devices operating by monitoring the amount of surface-bound analyte. In this work a new approach is presented where a label-free acoustic biosensor, based on a QCM-D device, and solution viscosity theory, are used to study DNA intrinsic viscosity. The latter is quantitatively related to the DNA conformation and specifically the(More)
Application of PCR to multiplexing assays is not trivial; it requires multiple fluorescent labels for amplicon detection and sophisticated software for data interpretation. Alternative PCR-free methods exploiting new concepts in nanotechnology exhibit high sensitivities but require multiple labeling and/or amplification steps. Here, we propose to simplify(More)
DNA hybridization studies at surfaces normally rely on the detection of mass changes as a result of the addition of the complementary strand. In this work we propose a mass-independent sensing principle based on the quantitative monitoring of the conformation of the immobilized single-strand probe and of the final hybridized product. This is demonstrated by(More)
We measured the intrinsic viscosity of very small synthetic DNA molecules, of 20-395 base pairs, and incorporated them in a nearly complete picture for the whole span of molecular weights reported in the literature to date. A major transition is observed at M approximately 2 × 10(6) . It is found that in the range of approximately 7 × 10(3) ≤ M ≤ 2 × 10(6)(More)
This work describes the development of a real-time rapid technique for the quantitative characterization of DNA intrinsic curvature and conformational changes. We present a new approach where a label-free acoustic biosensor (QCM-D) is used for the detection of DNA conformation independently of bound DNA mass. DNA molecules bind to a neutravidin modified(More)
The development of integrated platforms incorporating an acoustic device as the detection element requires addressing simultaneously several challenges of technological and scientific nature. The present work was focused on the design of a microfluidic module, which, combined with a dual or array type Love wave acoustic chip could be applied to biomedical(More)
The development of integrated, fast and affordable platforms for pathogen detection is an emerging area where a multidisciplinary approach is necessary for designing microsystems employing miniaturized devices; these new technologies promise a significant advancement of the current state of analytical testing leading to improved healthcare. In this work,(More)
In our sensing configuration, the quartz crystal microbalance device is employed for the first time for the solid phase amplification via the recombinase polymerase amplification method and simultaneous detection of DNA amplicons on the device surface. For amplicon detection, a novel methodology is described, where the formation of surface-bound DNA(More)
We present a polymeric microfluidic chip capable of purifying DNA through solid phase extraction. It is designed to be used as a module of an integrated Lab-on-chip platform for pathogen detection, but it can also be used as a stand-alone device. The microfluidic channels are oxygen plasma micro-nanotextured, i.e. randomly roughened in the micro-nano scale,(More)