George P. Lisi

Learn More
Cysteine-bound hemes are key components of many enzymes and biological sensors. Protonation (deprotonation) of the Cys ligand often accompanies redox transformations of these centers. To characterize these phenomena, we have engineered a series of Thr78Cys/Lys79Gly/Met80X mutants of yeast cytochrome c (cyt c) in which Cys78 becomes one of the axial ligands(More)
Allostery is a ubiquitous biological regulatory process in which distant binding sites within a protein or enzyme are functionally and thermodynamically coupled. Allosteric interactions play essential roles in many enzymological mechanisms, often facilitating formation of enzyme-substrate complexes and/or product release. Thus, elucidating the forces that(More)
It has been suggested that the alkaline form of cytochrome c (cyt c) regulates function of this protein as an electron carrier in oxidative phosphorylation and as a peroxidase that reacts with cardiolipin (CL) during apoptosis. In this form, Met80, the native ligand to the heme iron, is replaced by a Lys. While it has become clear that the structure of cyt(More)
Chimica Acta. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published inSyntheses,(More)
Conformational motions play an essential role in enzyme function, often facilitating the formation of enzyme-substrate complexes and/or product release. Although considerable debate remains regarding the role of molecular motions in the conversion of enzymatic substrates to products, numerous examples have found motions to be crucial for optimization of(More)
Cytochrome c (cyt. c) has been encapsulated in silica sol-gels and processed to form bioaerogels with gas-phase activity for nitric oxide through a simplified synthetic procedure. Previous reports demonstrated a need to adsorb cyt. c to metal nanoparticles prior to silica sol-gel encapsulation and processing to form aerogels. We report that cyt. c can be(More)
Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co2+, Cd2+, Cu2+, Ni2+ and Mn2+. The metal ions stabilize the protein to different extent, with the highest stability provided by the native Zn2+. This(More)
The insulin hexamer is resistant to degradation and fibrillation, which makes it an important quaternary structure for its in vivo storage in Zn(2+)- and Ca(2+)-rich vesicles in the pancreas and for pharmaceutical formulations. In addition to the two Zn(2+) ions that are required for its formation, three other species, Zn-coordinating anions (e.g., Cl(-)),(More)
Imidazole glycerol phosphate synthase (IGPS) is a V-type allosteric enzyme, meaning that its catalytic rate is critically dependent on activation by its allosteric ligand, N'-[(5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR). The allosteric mechanism of IGPS is reliant on millisecond conformational motions for efficient(More)
Allosteric enzymes regulate a wide range of catalytic transformations, including biosynthetic mechanisms of important human pathogens, upon binding of substrate molecules to an orthosteric (or active) site and effector ligands at distant (allosteric) sites. We find that enzymatic activity can be impaired by small molecules that bind along the allosteric(More)