Learn More
Integrational plasmid technology has been used to disrupt metabolic pathways leading to acetate and butyrate formation in Clostridium acetobutylicum ATCC 824. Non-replicative plasmid constructs, containing either clostridial phosphotransacetylase (pta) or butyrate kinase (buk) gene fragments, were integrated into homologous regions on the chromosome.(More)
It has been suggested (L. H. Harris, R. P. Desai, N. E. Welker, and E. T. Papoutsakis, Biotechnol. Bioeng. 67:1-11, 2000) that butyryl phosphate (BuP) is a regulator of solventogenesis in Clostridium acetobutylicum. Here, we determined BuP and acetyl phosphate (AcP) levels in fermentations of C. acetobutylicum wild type (WT), degenerate strain M5, a(More)
The genome sequence of the solvent-producing bacterium Clostridium acetobutylicum ATCC 824 has been determined by the shotgun approach. The genome consists of a 3.94-Mb chromosome and a 192-kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local(More)
The potential to produce succinate aerobically in Escherichia coli would offer great advantages over anaerobic fermentation in terms of faster biomass generation, carbon throughput, and product formation. Genetic manipulations were performed on two aerobic succinate production systems to increase their succinate yield and productivity. One of the aerobic(More)
Enterohemorrhagic strains of Escherichia coli must pass through the acidic gastric barrier to cause gastrointestinal disease. Taking into account the apparent low infectious dose of enterohemorrhagic E. coli, 11 O157:H7 strains and 4 commensal strains of E. coli were tested for their abilities to survive extreme acid exposures (pH 3). Three previously(More)
Reactions requiring reducing equivalents, NAD(P)H, are of enormous importance for the synthesis of industrially valuable compounds such as carotenoids, polymers, antibiotics and chiral alcohols among others. The use of whole-cell biocatalysis can reduce process cost by acting as catalyst and cofactor regenerator at the same time; however, product yields(More)
A novel in vivo method of producing succinate has been developed. A genetically engineered Escherichia coli strain has been constructed to meet the NADH requirement and carbon demand to produce high quantities and yield of succinate by strategically implementing metabolic pathway alterations. Currently, the maximum theoretical succinate yield under strictly(More)
A thermostable xylanase gene, xyn10A (CAP0053), was cloned from Clostridium acetobutylicum ATCC 824. The nucleotide sequence of the C. acetobutylicum xyn10A gene encoded a 318-amino-acid, single-domain, family 10 xylanase, Xyn10A, with a molecular mass of 34 kDa. Xyn10A exhibited extremely high (92%) amino acid sequence identity with Xyn10B (CAP0116) of(More)
The overexpression of acetyl-CoA (CoA) synthetase (ACS) in Escherichia coli showed significant reduction in acetate during glucose fermentation. It also greatly enhanced acetate assimilation when acetate was used as a carbon source. These features are ideal for applications in metabolic engineering. ACS overexpression can be strategically applied to reduce(More)
Clostridium acetobutylicum naturally produces acetone as well as butanol and ethanol. Since acetone cannot be used as a biofuel, its production needs to be minimized or suppressed by cell or bioreactor engineering. Thus, there have been attempts to disrupt or inactivate the acetone formation pathway. Here we present another approach, namely, converting(More)