Learn More
BACKGROUND AND PURPOSE Malformations of the brain stem are uncommon. We present MR imaging and diffusion tensor imaging (DTI) features of 6 patients with pontine tegmental cap dysplasia, characterized by ventral pontine hypoplasia and a dorsal "bump," and speculate on potential mechanisms by which it forms. MATERIALS AND METHODS Birth and developmental(More)
Molecular karyotyping using chromosome microarray analysis (CMA) detects more pathogenic chromosomal anomalies than classical karyotyping, making CMA likely to become a first tier test for prenatal diagnosis. Detecting copy number variants of uncertain clinical significance raises ethical considerations. We consider the risk of harm to a woman or her fetus(More)
OBJECTIVE Several studies have already shown the superiority of chromosomal microarray analysis (CMA) compared with conventional karyotyping for prenatal investigation of fetal ultrasound abnormality. This study used very high-resolution single nucleotide polymorphism (SNP) arrays to determine the impact on detection rates of all clinical categories of copy(More)
The availability of microarray technology has led to the recent recognition of copy number abnormalities of distal chromosome 22q11.2 that are distinct from the better-characterized deletions and duplications of the proximal region. This report describes five unrelated individuals with copy number abnormalities affecting distal chromosome 22q11.2. We report(More)
BACKGROUND The TRPV4 gene encodes a calcium-permeable ion-channel that is widely expressed, responds to many different stimuli and participates in an extraordinarily wide range of physiologic processes. Autosomal dominant brachyolmia, spondylometaphyseal dysplasia Kozlowski type (SMDK) and metatropic dysplasia (MD) are currently considered three distinct(More)
AIM Despite advances in medical investigation, many children with neurological conditions remain without a diagnosis, although a genetic aetiology is often suspected. Chromosomal microarray (CMA) screens for copy number variants (CNVs) and long continuous stretches of homozygosity (LCSH) and may further enhance diagnostic yield. Although recent studies have(More)
OBJECTIVE To describe a homogeneous subtype of periventricular nodular heterotopia (PNH) as part of a newly defined malformation complex. METHODS Observational study including review of brain MRI and clinical findings of a cohort of 50 patients with PNH in the temporo-occipital horns and trigones, mutation analysis of the FLNA gene, and anatomopathologic(More)
BACKGROUND AND PURPOSE Bilateral posterior PNH is a distinctive complex malformation with imaging features distinguishing it from classic bilateral PNH associated with FLNA mutations. The purpose of this study was to define the imaging features of posterior bilateral periventricular nodular heterotopia and to determine whether associated brain malformations(More)
Many exome sequencing studies of Mendelian disorders fail to optimally exploit family information. Classical genetic linkage analysis is an effective method for eliminating a large fraction of the candidate causal variants discovered, even in small families that lack a unique linkage peak. We demonstrate that accurate genetic linkage mapping can be(More)
Mutations conferring loss of function at the FLNA (encoding filamin A) locus lead to X-linked periventricular nodular heterotopia (XL-PH), with seizures constituting the most common clinical manifestation of this disorder in female heterozygotes. Vascular dilatation (mainly the aorta), joint hypermobility and variable skin findings are also associated(More)