Learn More
Experimental and imaging studies in monkeys have outlined various long association fiber bundles within the temporoparietal region. In the present study the trajectory of the middle longitudinal fascicle (MdLF) has been delineated in 4 human subjects using diffusion tensor magnetic resonance imaging segmentation and tractography. The MdLF seems to extend(More)
The precise characterization of cortical connectivity is important for the understanding of brain morphological and functional organization. Such connectivity is conveyed by specific pathways or tracts in the white matter. Diffusion-weighted magnetic resonance imaging detects the diffusivity of water molecules in three dimensions. Diffusivity is anisotropic(More)
OBJECTIVES Diffusion tensor magnetic resonance imaging (DT-MRI) assesses the integrity of white matter (WM) tracts in the brain. Children with bipolar disorder (BPD) may have WM abnormalities that precede illness onset. To more fully examine this possibility, we scanned children with DSM-IV BPD and compared them to healthy peers and children at risk for BPD(More)
We describe an MRI-based system for topological analysis followed by measurements of topographic features for the human cerebral cortex that takes as its starting point volumetric segmentation data. This permits interoperation between volume-based and surface-based topographic analysis and extends the functionality of many existing segmentation schemes. We(More)
The middle longitudinal fascicle (MdLF) is a major fiber connection running principally between the superior temporal gyrus and the parietal lobe, neocortical regions of great biological and clinical interest. Although one of the most prominent cerebral association fiber tracts, it has only recently been discovered in humans. In this high angular resolution(More)
Since the existence of the occipitofrontal fascicle (OFF) in humans has remained controversial, we utilized diffusion tensor imaging (DT-MRI)-based segmentation and tractography to investigate its trajectory in vivo in the human. We found that the OFF is distinct from the subcallosal fasciculus or Muratoff's bundle (MB) and extends from the dorsal and(More)
Attention-deficit/hyperactivity disorder (ADHD) is hypothesized to be due, in part, to structural defects in brain networks influencing cognitive, affective, and motor behaviors. Although the current literature on fiber tracts is limited in ADHD, gray matter abnormalities suggest that white matter (WM) connections may be altered selectively in neural(More)
Recent anatomical studies have found that cortical neurons are mainly preserved during the aging process while myelin damage and even axonal loss is prominent throughout the forebrain. We used diffusion tensor imaging (DT-MRI) to evaluate the hypothesis that during the process of normal aging, white matter changes preferentially affect the integrity of long(More)
Based on high-resolution diffusion tensor magnetic resonance imaging (DTI) tractographic analyses in 39 healthy adult subjects, we derived patterns of connections and measures of volume and biophysical parameters, such as fractional anisotropy (FA) for the human middle longitudinal fascicle (MdLF). Compared to previous studies, we found that the cortical(More)
Deep Brain Stimulation (DBS) is a neurosurgical procedure that can reduce symptoms in medically intractable obsessive-compulsive disorder (OCD). Conceptually, DBS of the ventral capsule/ventral striatum (VC/VS) region targets reciprocal excitatory connections between the orbitofrontal cortex (OFC) and thalamus, decreasing abnormal reverberant activity(More)