George L. Heard

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
In 1960 Bartell proposed that interligand repulsions in some simple organic molecules of the types CX3 and CX4, are much more important in determining molecular geometry than had previously been generally supposed. In recent work we have shown that this concept can be extended to analogous molecules of beryllium and boron where X is F, OH, or O. Assuming as(More)
Semiempirical molecular orbital theory has been used to study the effects of solvation by acetonitrile on the Stevens rearrangement of methylammonium formylmethylide to 2-aminopropanal. Three methods of solvation have been used to investigate both the electrostatic and specific solvent-solute effects of solvation: a supermolecule calculation involving the(More)
The recombination of CCl3 radicals with CH3, CH3CH2, and CF3CH2 radicals was used to generate CH3CCl3, CH3CH2CCl3, and CF3CH2CCl3 molecules with approximately 87 kcal mol(-1) of vibrational energy in a bath gas at room temperature. The competition between collisional deactivation and unimolecular reaction by HCl elimination was used to obtain the(More)
The recombination of CHF2 and C2D5 radicals was used to produce CD3CD2CHF2* molecules with 96 kcal mol(-1) of vibrational energy in a room temperature bath gas. The formation of CD3CD═CHF and CD3CD═CDF was used to identify the 1,2-DF and 1,1-HF unimolecular elimination channels; CD3CD═CDF is formed by isomerization of the singlet-state CD3CD2CF carbene. The(More)
The 1,2-HX elimination reaction (where X = F, Cl, Br, OH) has been established as an important reaction in the degradation of compounds introduced into the upper atmosphere, including common CFC replacement compounds. By analyzing the electron densities of the transition state geometries of these reactions using QTAIM, we see that we can divide these(More)
A recent photofragment translational spectroscopy study of 1,1-dichloroacetone at 193 nm reported two primary unimolecular decomposition channels: C-Cl bond cleavage and elimination of HCl in a 9:1 ratio, respectively. The HCl translational energy distribution was bimodal suggesting two distinct decomposition pathways that were assumed to be 1,1-HCl loss(More)
Chemically activated C2D5CHCl2 molecules were generated with 88 kcal mol-1 of vibrational energy by the recombination of C2D5 and CHCl2 radicals in a room temperature bath gas. The competing 2,1-DCl and 1,1-HCl unimolecular reactions were identified by the observation of the CD3CD=CHCl and CD3CD=CDCl products. The initial CD3CD2C-Cl carbene product from(More)
The unimolecular reactions of 1-propanol, 3,3,3-propan-1-ol-d3, 3,3,3-trifluoropropan-1-ol, and 3-chloropropan-1-ol have been studied by the chemical activation technique. The recombination of CH3, CD3, CF3, and CH2Cl radicals with CH2CH2OH radicals at room temperature was used to generate vibrationally excited CH3CH2CH2OH, CD3CH2CH2OH, CF3CH2CH2OH, and(More)
The room-temperature gas-phase recombination of CH2F and CD2Cl radicals was used to prepare CH2FCD2Cl molecules with 91 kcal mol(-1) of vibrational energy. Three unimolecular processes are in competition with collisional deactivation of CH2FCD2Cl; HCl and DF elimination to give CHF═CD2 and CH2═CDCl plus isomerization to give CH2ClCD2F by the interchange of(More)
Vibrationally excited CD3CHFCl molecules with 96 kcal mol(-1) of energy were generated by the recombination of CD3 and CHFCl radicals in a room-temperature bath gas. The four competing unimolecular decomposition reactions, namely, 1,1-HCl and 1,2-DCl elimination and 1,1-HF and 1,2-DF elimination, were observed, and the individual rate constants were(More)