Learn More
Excess cellular cholesterol induces apoptosis in macrophages, an event likely to promote progression of atherosclerosis. The cellular mechanism of cholesterol-induced apoptosis is unknown but had previously been thought to involve the plasma membrane. Here we report that the unfolded protein response (UPR) in the endoplasmic reticulum is activated in(More)
We provide analytical models for capacity evaluation of an infrastructure IEEE 802.11 based network carrying TCP controlled file downloads or full-duplex packet telephone calls. In each case the analytical models utilize the attempt probabilities from a well known fixed-point based saturation analysis. For TCP controlled file downloads, following Bruno et(More)
Macrophages in advanced atherosclerotic lesions accumulate large amounts of unesterified, or "free," cholesterol (FC). FC accumulation induces macrophage apoptosis, which likely contributes to plaque destabilization. Apoptosis is triggered by the enrichment of the endoplasmic reticulum (ER) with FC, resulting in depletion of ER calcium stores, and induction(More)
OBJECTIVE Macrophage apoptosis plays important roles in atherosclerosis. Bcl-2 is a key cell survival molecule, but its role in macrophage apoptosis in atherosclerosis is not known. The goal herein was to determine the effect of macrophage-targeted deletion of Bcl-2 on macrophage apoptosis in atherosclerotic lesions of Apoe(-/-) mice. METHODS AND RESULTS(More)
OBJECTIVE Atherosclerotic plaques that are prone to disruption and acute thrombotic vascular events are characterized by large necrotic cores. Necrotic cores result from the combination of macrophage apoptosis and defective phagocytic clearance (efferocytosis) of these apoptotic cells. We previously showed that macrophages with tyrosine kinase-defective(More)
Inflammatory cytokines have been linked to atherosclerosis by using cell culture models and acute inflammation in animals. The goal of this study was to examine lipoprotein levels and early atherosclerosis in chronic animal models of altered IL-1 physiology by using mice with deficient or excess IL-1 receptor antagonist (IL-1ra). IL-1ra knockout C57BL/6J(More)
Endoplasmic reticulum (ER) stress is a hallmark of advanced atherosclerosis, but its causative role in plaque progression is unknown. In vitro studies have implicated the ER stress effector CHOP in macrophage apoptosis, a process involved in plaque necrosis in advanced atheromata. To test the effect of CHOP deficiency in vivo, aortic root lesions of fat-fed(More)
ER stress occurs in macrophage-rich areas of advanced atherosclerotic lesions and contributes to macrophage apoptosis and subsequent plaque necrosis. Therefore, signaling pathways that alter ER stress-induced apoptosis may affect advanced atherosclerosis. Here we placed Apoe-/- mice deficient in macrophage p38alpha MAPK on a Western diet and found that they(More)
Macrophage death in advanced atherosclerotic lesions leads to lesional necrosis and likely promotes plaque instability, a precursor of acute vascular events. Macrophages in advanced lesions accumulate large amounts of unesterified cholesterol, which is a potent inducer of macrophage apoptosis. We have shown recently that induction of apoptosis in cultured(More)
BACKGROUND Thiazolidinediones (TZDs), which have actions that involve both peroxisome proliferator-activated receptor (PPAR)-gamma-dependent and -independent effects, improve insulin sensitivity in type II diabetes and inhibit early atherogenesis in mice. However, the effects of TZDs on advanced lesion progression are unknown. METHODS AND RESULTS(More)