George Kollias

Learn More
This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and(More)
Dominant mutations in superoxide dismutase cause amyotrophic lateral sclerosis (ALS), a progressive paralytic disease characterized by loss of motor neurons. With the use of mice carrying a deletable mutant gene, expression within motor neurons was shown to be a primary determinant of disease onset and of an early phase of disease progression. Diminishing(More)
Astrocytes actively participate in synaptic integration by releasing transmitter (glutamate) via a calcium-regulated, exocytosis-like process. Here we show that this process follows activation of the receptor CXCR4 by the chemokine stromal cell-derived factor 1 (SDF-1). An extraordinary feature of the ensuing signaling cascade is the rapid extracellular(More)
We have generated transgenic mouse lines carrying and expressing wild-type and 3'-modified human tumour necrosis factor (hTNF-alpha, cachectin) transgenes. We show that correct, endotoxin-responsive and macrophage-specific hTNF gene expression can be established in transgenic mice and we present evidence that the 3'-region of the hTNF gene may be involved(More)
We addressed the impact of deleting TNF AU-rich elements (ARE) from the mouse genome on the regulation of TNF biosynthesis and the physiology of the host. Absence of the ARE affected mechanisms responsible for TNF mRNA destabilization and translational repression in hemopoietic and stromal cells. In stimulated conditions, TNF ARE were required both for the(More)
The 60 kDa tumor necrosis factor receptor (TNFR60) is regarded as the major signal transducer of TNF-induced cellular responses, whereas the signal capacity and role of the 80 kDa TNFR (TNFR80) remain largely undefined. We show here that the transmembrane form of TNF is superior to soluble TNF in activating TNFR80 in various systems such as T cell(More)
Tpl2 knockout mice produce low levels of TNF-alpha when exposed to lipopolysaccharide (LPS) and they are resistant to LPS/D-Galactosamine-induced pathology. LPS stimulation of peritoneal macrophages from these mice did not activate MEK1, ERK1, and ERK2 but did activate JNK, p38 MAPK, and NF-kappaB. The block in ERK1 and ERK2 activation was causally linked(More)
The scientific dogma that multiple sclerosis (MS) is a disease caused by a single pathogenic mechanism has been challenged recently by the heterogeneity observed in MS lesions and the realization that not all patterns of demyelination can be modeled by autoimmune-triggered mechanisms. To evaluate the contribution of local tumor necrosis factor (TNF)(More)
We have constructed a "minilocus" that contains the 5' and 3' flanking regions of the human beta-globin locus and the beta-globin gene. These regions are characterized by erythroid-specific DNAase I-superhypersensitive sites and are normally located approximately 50 kb 5' and 20 kb 3' of the beta-globin gene. This minilocus is expressed tissue-specifically(More)
To investigate the role of TNF alpha in the development of in vivo immune response we have generated TNF alpha-deficient mice by gene targeting. Homozygous mutant mice are viable and fertile, develop lymph nodes and Peyer's patches and show no apparent phenotypic abnormalities, indicating that TNF alpha is not required for normal mouse development. In the(More)