George Jackson de Moraes Rocha

Learn More
Experiments based on a 23 central composite full factorial design were carried out in 200-ml stainless-steel containers to study the pretreatment, with dilute sulfuric acid, of a sugarcane bagasse sample obtained from a local sugar–alcohol mill. The independent variables selected for study were temperature, varied from 112.5°C to 157.5°C, residence time,(More)
An essential step in the conversion of lignocellulosic biomass to ethanol and other biorefinery products is conversion of cell wall polysaccharides into fermentable sugars by enzymatic hydrolysis. The objective of the present study was to understand the mode of action of hemicellulolytic enzyme mixtures for pretreated sugarcane bagasse (PSB) deconstruction(More)
Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization,(More)
Much of the controversy surrounding second generation ethanol production arises from the assumed competition with first generation ethanol production; however, in Brazil, where bioethanol is produced from sugarcane, sugarcane bagasse and trash will be used as feedstock for second generation ethanol production. Thus, second generation ethanol production may(More)
Sugarcane bagasse was pretreated with diluted sulfuric acid to obtain sugarcane bagasse hemicellulosic hydrolysate (SBHH). Experiments were conducted in laboratory and semi-pilot reactors to optimize the xylose recovery and to reduce the generation of sugar degradation products, as furfural and 5-hydroxymethylfurfural (HMF). The hydrolysis scale-up(More)
Atmospheric pressure O₂ plasma was used to produce ozone in order to treat sugarcane bagasse as a function of particle sizes. The fixed bagasse moisture content was 50%. The delignification efficiency had small improvement due to ozonation process as a function of particle size, varying from 75 up to 80%. Few amounts of hemicellulose were removed, but the(More)
Sugarcane bagasse samples were pretreated with ozone via atmospheric O2 pressure plasma. A delignification efficiency of approximately 80 % was observed within 6 h of treatment. Some hemicelluloses were removed, and the cellulose was not affected by ozonolysis. The quantity of moisture in the bagasse had a large influence on delignification and(More)
This work aims to evaluate the fermentability of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing using Candida guilliermondii FTI 20037 yeast. The inoculum was obtained from yeast culture in a medium containing glucose as a carbon source supplemented with rice bran extract, CaCl2·2H2O(More)
Enzymatic hydrolysis of pretreated sugarcane bagasse was performed to investigate the production of ethanol. The sugarcane bagasse was pretreated in a process combining steam explosion and alkaline delignification. The lignin content decreased to 83%. Fed-batch enzymatic hydrolyses was initiated with 8% (w/v) solids loading, and 10 FPU/g cellulose. Then, 1%(More)
Five pilot-scale steam explosion pretreatments of sugarcane bagasse followed by alkaline delignification were explored. The solubilised lignin was precipitated with 98% sulphuric acid. Most of the pentosan (82.6%), and the acetyl group fractions were solubilised during pretreatment, while 90.2% of cellulose and 87.0% lignin were recovered in the solid(More)