Learn More
Extensive empirical studies presented in this article confirm that the quality of radio communication between low-power sensor devices varies significantly with time and environment. This phenomenon indicates that the previous topology control solutions, which use static transmission power, transmission range, and link quality, might not be effective in the(More)
The paper investigates the stability properties of mobile agent formations which are based on leader following. We derive nonlinear gain estimates that capture how leader behavior affects the interconnection errors observed in the formation. Leader-to-formation stability (LFS) gains quantify error amplification, relate interconnection topology to stability(More)
A hybrid system is a dynamical system with both discrete and continuous state changes. For analysis purposes, it is often useful to abstract a system in a way that preserves the properties being analyzed while hiding the details that are of no interest. We show that interesting classes of hybrid systems can be abstracted to purely discrete systems while(More)
—Air Traffic Management (ATM) of the future allows for the possibility of free flight, in which aircraft choose their own optimal routes, altitudes, and velocities. The safe resolution of trajectory conflicts between aircraft is necessary to the success of such a distributed control system. In this paper, we present a method to synthesize provably safe(More)
This is the first of a two-part paper that investigates the stability properties of a system of multiple mobile agents with double integrator dynamics. In this first part we generate stable flocking motion for the group using a coordination control scheme which gives rise to smooth control laws for the agents. These control laws are a combination of(More)
The work of this paper is inspired by the flocking phenomenon observed in Reynolds (1987). We introduce a class of local control laws for a group of mobile agents that result in: (i) global alignment of their velocity vectors, (ii) convergence of their speeds to a common one, (iii) collision avoidance, and (iv) minimization of the agents artificial(More)
Established system relationships for discrete systems, such as language inclusion, simulation, and bisimulation, require system observations to be identical. When interacting with the physical world, modeled by continuous or hybrid systems, exact relationships are restrictive and not robust. In this paper, we develop the first framework of system(More)
This is the second of a two-part paper, investigating the stability properties of a system of multiple mobile agents with double integrator dynamics. In this second part, we allow the topology of the control interconnections between the agents in the group to vary with time. Specifically, the control law of an agent depends on the state of a set of agents(More)
—The control of complex systems poses new challenges that fall beyond the traditional methods of control theory. One of these challenges is given by the need to control, coordinate and synchronize the operation of several interacting submodules within a system. The desired objectives are no longer captured by usual control specifications such as(More)
We consider an optimal-reachability problem for a timed automaton with respect to a linear cost function which results in a weighted timed automaton. Our solution to this optimization problem consists of reducing it to a (parametric) shortest-path problem in a nite directed graph. The directed graph we construct is a reenement of the region automaton due to(More)