Learn More
Certain natural products and Asian herbal remedies have been used in Asia to attenuate neurodegenerative diseases, including senile dementia. We have examined derivatives of several natural products for potential neuroprotective activity in an in vitro test system. In the present study, we assayed a number of compounds that were isolated from Panax ginseng(More)
Spinal cord injury (SCI) causes a permanent neurological disability, and no satisfactory treatment is currently available. After SCI, pro-nerve growth factor (proNGF) is known to play a pivotal role in apoptosis of oligodendrocytes, but the cell types producing proNGF and the signaling pathways involved in proNGF production are primarily unknown. Here, we(More)
We investigated the role of tumor necrosis factor (TNF)-alpha in the onset of neuronal and glial apoptosis after traumatic spinal cord crush injury in rats. A few TUNEL-positive cells were first observed within and surrounding the lesion area 4 h after injury, with the largest number observed 24-48 h after injury. Double-labeling of cells using cell(More)
We evaluated the contribution of p38 mitogen-activated protein kinase and the events upstream/downstream of p38 leading to dopaminergic neuronal death. We utilized MN9D cells and primary cultures of mesencephalic neurons treated with 6-hydroxydopamine. Phosphorylation of p38 preceded apoptosis and was sustained in 6-hydroxydopamine-treated MN9D cells.(More)
We examined the effects of minocycline, an anti-inflammatory drug, on functional recovery following spinal cord injury (SCI). Rats received a mild, weight-drop contusion injury to the spinal cord and were treated with the vehicle or minocycline at a dose of 90 mg/kg immediately after SCI and then twice at a dose of 45 mg/kg every 12 h. Injecting minocycline(More)
Recent evidence indicates that estrogen exerts neuroprotective effects in both brain injury and neurodegenerative diseases. We examined the protective effect of estrogen on functional recovery after spinal cord injury (SCI) in rats. 17beta-estradiol (3, 100, or 300 microg/kg) was administered intravenously 1-2 h prior to injury (pre-treatment), and animals(More)
Transferrin is the plasma protein responsible for iron transport in all vertebrates. While transferrin is known to have growth-promoting activity on a variety of cells in culture, the role of transferrin and its membrane receptor in neuronal development is unknown. Using antibodies to transferrin and transferrin receptors, we studied the immunocytochemical(More)
In higher vertebrates, reactive gliosis resulting from injury to the central nervous system (CNS) is characterized by a rapid increase in immunoreactivity (IR) to glial fibrillary acidic protein (GFAP). Little is known about the extracellular signals that initiate the increase in GFAP-IR following CNS injury. We demonstrated recently [T.H. Oh, G.J.(More)
Buffering extracellular pH at the site of a spinal cord crush-injury may stimulate axonal regeneration in rats (1; Guth et al., Exp. Neurol. 88: 44-55, 1985). We demonstrated in cultured astrocytes that acidic pH initiates a rapid increase in immunoreactivity for GFAP (GFAP-IR), a hallmark of reactive gliosis (2; Oh et al., Glia 13: 319-322, 1995). We(More)
The effects of neurotoxins on levels of mitochondrially encoded gene transcripts in a dopaminergic neuronal cell line, MN9D, were examined following treatment with 200 microM N-methyl-4-phenylpyridinium (MPP(+)) or 6-hydroxydopamine (6-OHDA). As confirmed by a Northern blot analysis, levels of cytochrome c oxidase subunit 3 (COX III) and ATPase subunit 6(More)