George J. F. Heigenhauser

Learn More
Parra et al. (Acta Physiol. Scand 169: 157-165, 2000) showed that 2 wk of daily sprint interval training (SIT) increased citrate synthase (CS) maximal activity but did not change "anaerobic" work capacity, possibly because of chronic fatigue induced by daily training. The effect of fewer SIT sessions on muscle oxidative potential is unknown, and aside from(More)
Our laboratory recently showed that six sessions of sprint interval training (SIT) over 2 wk increased muscle oxidative potential and cycle endurance capacity (Burgomaster KA, Hughes SC, Heigenhauser GJF, Bradwell SN, and Gibala MJ. J Appl Physiol 98: 1895-1900, 2005). The present study tested the hypothesis that short-term SIT would reduce skeletal muscle(More)
Exercise training induces mitochondrial biogenesis, but the time course of molecular sequelae that accompany repetitive training stimuli remains to be determined in human skeletal muscle. Therefore, throughout a seven-session, high-intensity interval training period that increased (12%), we examined the time course of responses of (a) mitochondrial(More)
Our aim was to examine the effects of seven high-intensity aerobic interval training (HIIT) sessions over 2 wk on skeletal muscle fuel content, mitochondrial enzyme activities, fatty acid transport proteins, peak O(2) consumption (Vo(2 peak)), and whole body metabolic, hormonal, and cardiovascular responses to exercise. Eight women (22.1 +/- 0.2 yr old,(More)
The purpose of the study was to examine the roles of active pyruvate dehydrogenase (PDH(a)), glycogen phosphorylase (Phos), and their regulators in lactate (Lac(-)) metabolism during incremental exercise after ingestion of 0.3 g/kg of either NaHCO(3) [metabolic alkalosis (ALK)] or CaCO(3) [control (CON)]. Subjects (n = 8) were studied at rest, rest(More)
We examined whether, in human obesity and type 2 diabetes, long chain fatty acid (LCFA) transport into skeletal muscle is upregulated and contributes to an excess intramuscular triacylglycerol accumulation. In giant sarcolemmal vesicles prepared from human skeletal muscle, LCFA transport rates were upregulated approximately 4-fold and were associated with(More)
Intramuscular triacylglyerols (IMTGs) represent a potentially important energy source for contracting human skeletal muscle. Although the majority of evidence from isotope tracer and (1)H-magnetic resonance spectroscopy (MRS) studies demonstrate IMTG utilization during exercise, controversy regarding the importance of IMTG as a metabolic substrate persists.(More)
The time course for the activation of glycogen phosphorylase (Phos) and pyruvate dehydrogenase (PDH) and their allosteric regulators was determined in human skeletal muscle during repeated bouts of maximal exercise. Six subjects completed three 30-s bouts of maximal isokinetic cycling separated by 4-min recovery periods. Muscle biopsies were taken at rest(More)
We investigated the ionic changes in arterial (a) and femoral venous (fv) blood that accompany muscle fatigue with repeated maximal exercise. Measurements were made on separated plasma and hemolysed whole blood to quantify the relative contributions of plasma and erythrocytes to this acid-base challenge. Five healthy males performed four 30-s bouts of(More)
This study investigated intramuscular triacylglycerol (IMTG) and glycogen utilisation, pyruvate dehydrogenase activation (PDHa) and acetyl group accumulation during prolonged moderate intensity exercise. Seven endurance-trained men cycled for 240 min at 57 % maximal oxygen consumption (V(O2,max)) and duplicate muscle samples were obtained at rest and at 10,(More)