Learn More
1. Digital imaging and photometry were used in conjunction with the fluorescent Ca2+ indicator, Fura-2, to examine intracellular Ca2+ signals produced by depolarization of single adrenal chromaffin cells. 2. Depolarization with a patch pipette produced radial gradients of Ca2+ within the cell, with Ca2+ concentration highest in the vicinity of the plasma(More)
A number of calcium buffers were examined for their ability to reduce evoked transmitter release when injected into the presynaptic terminal of the squid giant synapse. Injection of EGTA was virtually ineffective at reducing transmitter release, even at estimated intracellular concentrations up to 80 mM. Conversely, the buffer(More)
Optogenetic methods have emerged as powerful tools for dissecting neural circuit connectivity, function and dysfunction. We used a bacterial artificial chromosome (BAC) transgenic strategy to express the H134R variant of channelrhodopsin-2, ChR2(H134R), under the control of cell type–specific promoter elements. We performed an extensive functional(More)
To permit rapid optical control of brain activity, we have engineered multiple lines of transgenic mice that express the light-activated cation channel Channelrhodopsin-2 (ChR2) in subsets of neurons. Illumination of ChR2-positive neurons in brain slices produced photocurrents that generated action potentials within milliseconds and with precisely timed(More)
The functions of synapsins were examined by characterizing the phenotype of mice in which all three synapsin genes were knocked out. Although these triple knock-out mice were viable and had normal brain anatomy, they exhibited a number of behavioral defects. Synaptic transmission was altered in cultured neurons from the hippocampus of knock-out mice. At(More)
Channelrhodopsin-2 (ChR2) is a light-gated, cation-selective ion channel isolated from the green algae Chlamydomonas reinhardtii. Here, we report the generation of transgenic mice that express a ChR2-YFP fusion protein in the CNS for in vivo activation and mapping of neural circuits. Using focal illumination of the cerebral cortex and olfactory bulb, we(More)
The application of molecular techniques to cultured central nervous system (CNS) neurons has been limited by a lack of simple and efficient methods to introduce macromolecules into their cytosol. We have developed an electroporation technique that efficiently transfers RNA, DNA and other large membrane-impermeant molecules into adherent hippocampal neurons.(More)
We constructed a novel optical indicator for chloride ions by fusing the chloride-sensitive yellow fluorescent protein with the chloride-insensitive cyan fluorescent protein. The ratio of FRET-dependent emission of these fluorophores varied in proportion to the concentration of Cl and was used to measure intracellular chloride concentration ([Cl-]i) in(More)
We have performed experiments designed to test the hypothesis that long-term depression (LTD) of excitatory synaptic transmission in the cerebellar cortex is caused by a rise in postsynaptic Ca concentration. These experiments combined measurements of synaptic efficacy, performed with the thin slice patch clamp technique, with fura-2 measurements of(More)
Localized, chemical two-photon photolysis of caged glutamate was used to map the changes in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors caused by long-term synaptic depression (LTD) in cerebellar Purkinje cells. LTD produced by pairing parallel fiber activity with depolarization was accompanied by a decline in the(More)