Learn More
Spinal and bulbar muscular atrophy (SBMA) is a motor neuron disease caused by polyglutamine expansion mutation in the androgen receptor (AR). We investigated whether the mutant protein alters mitochondrial function. We found that constitutive and doxycycline-induced expression of the mutant AR in MN-1 and PC12 cells, respectively, are associated with(More)
The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. Dynactin is ubiquitously expressed in eukaryotes, but a G59S mutation in the p150Glued subunit of dynactin results in the specific degeneration of motor neurons. This mutation in the conserved cytoskeleton-associated protein,(More)
Androgens, like other steroid hormones, exert profound effects on cell growth and survival by modulating the expression of target genes. In vertebrates, androgens play a critical role downstream of the testis determination pathway, influencing the expression of sexually dimorphic traits. Among cells of the nervous system, motor neurons respond to trophic(More)
There is substantial evidence supporting the role of aspartate or glutamate as the neurotransmitter of the auditory nerve. The concentration of aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC, an enzyme associated with the metabolism of these amino acids, is high in axons and terminals of the auditory nerve. Antibodies(More)
BACKGROUND Clinical trials of drugs that increase SMN protein levels in vitro are currently under way in patients with spinal muscular atrophy. OBJECTIVE To develop and validate measures of SMN mRNA and protein in peripheral blood and to establish baseline SMN levels in a cohort of controls, carriers, and patients of known genotype, which could be used to(More)
Kennedy's disease is a degenerative disease of motor neurons in which the causative mutation is expansion of a CAG/polyglutamine tract near the 5' end of the androgen receptor gene. The mutant protein misfolds, aggregates, and interacts abnormally with other proteins, leading to a novel, toxic gain of function and an alteration of normal function. We used a(More)
Spinal and bulbar muscular atrophy (SBMA, Kennedy's disease) is a motor neuron disease caused by polyglutamine repeat expansion in the androgen receptor. Although degeneration occurs in the spinal cord and muscle, the exact mechanism is not clear. Induced pluripotent stem cells from spinal and bulbar muscular atrophy patients provide a useful model for(More)
The protein kinase C gamma (PKCgamma) gene is mutated in spinocerebellar ataxia type 14 (SCA14). In this study, we investigated the effects of two SCA14 missense mutations, G118D and C150F, on PKCgamma function. We found that these mutations increase the intrinsic activity of PKCgamma. Direct visualization of labelled PKCgamma in living cells demonstrates(More)
Expanded polyglutamine tracts cause neurodegeneration through a toxic gain-of-function mechanism. Generation of inclusions is a common feature of polyglutamine diseases and other protein misfolding disorders. Inclusion formation is likely to be a defensive response of the cell to the presence of unfolded protein. Recently, the compound B2 has been shown to(More)