George G. Harmison

Learn More
The use of Moloney murine leukemia virus (Mo-MLV)-based vectors to deliver therapeutic genes into target cells is limited by their inability to transduce nondividing cells. To test the capacity of HIV-based vectors to deliver genes into nondividing cells, we have generated replication-defective HIV type 1 (HIV-1) reporter vectors carrying neomycin(More)
The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. Dynactin is ubiquitously expressed in eukaryotes, but a G59S mutation in the p150Glued subunit of dynactin results in the specific degeneration of motor neurons. This mutation in the conserved cytoskeleton-associated protein,(More)
Kennedy's disease is a degenerative disease of motor neurons in which the causative mutation is expansion of a CAG/polyglutamine tract near the 5' end of the androgen receptor gene. The mutant protein misfolds, aggregates, and interacts abnormally with other proteins, leading to a novel, toxic gain of function and an alteration of normal function. We used a(More)
Several mono-, di-, tetra-, penta- and nonaribozymes were developed. These multitarget-ribozymes were targeted to cleave HIV-1 env RNA at up to nine different conserved sites. Each multitarget-ribozyme consisted of a chain of up to nine hammerhead motifs, each flanked by a different targeting sequence. The multitarget-ribozymes were functional in vitro and(More)
Spinal and bulbar muscular atrophy (SBMA) is a motor neuron disease caused by polyglutamine expansion mutation in the androgen receptor (AR). We investigated whether the mutant protein alters mitochondrial function. We found that constitutive and doxycycline-induced expression of the mutant AR in MN-1 and PC12 cells, respectively, are associated with(More)
BACKGROUND Clinical trials of drugs that increase SMN protein levels in vitro are currently under way in patients with spinal muscular atrophy. OBJECTIVE To develop and validate measures of SMN mRNA and protein in peripheral blood and to establish baseline SMN levels in a cohort of controls, carriers, and patients of known genotype, which could be used to(More)
Spinal and bulbar muscular atrophy (SBMA, Kennedy's disease) is a motor neuron disease caused by polyglutamine repeat expansion in the androgen receptor. Although degeneration occurs in the spinal cord and muscle, the exact mechanism is not clear. Induced pluripotent stem cells from spinal and bulbar muscular atrophy patients provide a useful model for(More)
Enveloped virus particles carrying the human immunodeficiency virus (HIV) CD4 receptor may potentially be employed in a targeted antiviral approach. The mechanisms for efficient insertion and the requirements for the functionality of foreign glycoproteins within viral envelopes, however, have not been elucidated. Conditions for efficient insertion of(More)
OBJECTIVE Spinal muscular atrophy (SMA) is one of the most common severe hereditary diseases of infancy and early childhood in North America, Europe, and Asia. SMA is usually caused by deletions of the survival motor neuron 1 (SMN1) gene. A closely related gene, SMN2, modifies the disease severity. SMA carriers have only 1 copy of SMN1 and are relatively(More)