George E. Martin

Learn More
NADPH:protochlorophyllide oxidoreductase (POR) catalyses the light-dependent reduction of protochlorophyllide to chlorophyllide, a key reaction in the chlorophyll biosynthetic pathway. To facilitate structure-function studies, POR from pea (Pisum sativum L.) has been overexpressed in Escherichia coli as a fusion with maltose-binding protein (MBP) at 5-10%(More)
NADPH:protochlorophyllide oxidoreductase (POR) catalyses the light-dependent reduction of protochlorophyllide to chlorophyllide, a key regulatory reaction in the chlorophyll biosynthetic pathway. POR from the cyanobacterium Synechocystis has been overproduced in Escherichia coli with a hexahistidine tag at the N-terminus. This enzyme (His(6)-POR) has been(More)
The binding of sugars and antibiotics to the overexpressed D-galactose-H+ symport protein (GalP) can be monitored from changes in the fluorescence of 8-anilino-1-naphthalenesulfonate (ANS) equilibrated with inside-out vesicles. Transported sugars, such as D-glucose and D-galactose, cause an enhancement in the ANS fluorescence of up to 13%. Nontransported(More)
(1) We have prepared murine monoclonal antibodies to the membrane domain of the human erythrocyte anion transport protein (band 3). (2) All of these antibodies react with regions of the protein located at the cytoplasmic surface of the red cell. (3) One of the antibodies reacts with an epitope present on a cytoplasmic loop of the protein located between the(More)
The interactions between the D-galactose-H+ symporter (GalP) from Escherichia coli and the inhibitory antibiotics, cytochalasin B and forskolin, and the substrates, D-galactose and H+, have been investigated for the wild-type protein and the mutants Trp-371-->Phe and Trp-395-->Phe, so that the roles of these residues in the structure-activity relationship(More)
Forskolin is a potent inhibitor of mammalian passive glucose transporters. Here we show that forskolin is a remarkably specific inhibitor of energized D-galactose transport by the GalP sugar-H+ symport protein of Escherichia coli. Surprisingly, it does not inhibit transport of L-arabinose or D-xylose by the related E. coli AraE and XylE transporters, even(More)