George D. Hartman

Learn More
This letter describes the development of two series of potent and selective allosteric Akt kinase inhibitors that display an unprecedented level of selectivity for either Akt1, Akt2 or both Akt1/Akt2. An iterative analog library synthesis approach quickly provided a highly selective Akt1/Akt2 inhibitor that induces apoptosis in tumor cells and inhibits Akt(More)
This report describes the discovery of the first centrally active allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGluR5). Appropriately substituted N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamides (e.g., 8) have been identified as a novel class of potent positive allosteric modulators of mGluR5 that potentiate the response to glutamate.(More)
This Letter describes, for the first time, the synthesis and SAR, developed through an iterative analog library approach, that led to the discovery of the positive allosteric modulator (PAM) of the metabotropic glutamate receptor mGluR5 CPPHA. Binding to a unique allosteric binding site distinct from other mGluR5 PAMs, CPPHA has been the focus of numerous(More)
For Ras oncoproteins to transform mammalian cells, they must be post-translationally modified with a farnesyl group in a reaction catalysed by the enzyme farnesyl-protein transferase (FPTase). Inhibitors of FPTase have therefore been proposed as anti-cancer agents. We show that L-744,832, which mimics the CaaX motif to which the farnesyl group is added, is(More)
Integrins, especially αvβ3 and αvβ5, are upregulated in tumor cells and activated endothelial cells and as such, serve as cancer biomarkers. We developed a novel near-infrared-labeled optical agent for the in vivo detection and quantification of αvβ3/αvβ5. A small peptidomimetic αvβ3 antagonist was synthesized, coupled to a near-infrared fluorescent (NIRF)(More)
Farnesyl:protein transferase (FPTase) inhibitors (FTIs) were originally developed as potential anticancer agents targeting the ras oncogene and are currently in clinical trials. Whereas FTIs inhibit the farnesylation of Ha-Ras, they do not completely inhibit the prenylation of Ki-Ras, the allele most frequently mutated in human cancers. Whereas(More)
Despite increased understanding of the biological basis for sleep control in the brain, few novel mechanisms for the treatment of insomnia have been identified in recent years. One notable exception is inhibition of the excitatory neuropeptides orexins A and B by design of orexin receptor antagonists. Herein, we describe how efforts to understand the origin(More)