George C. Blouin

Learn More
Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full-length globins with the classical eight helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobins, the physiological functions of these plant(More)
The heme-binding proteins Shp and HtsA are part of the heme acquisition machinery found in Streptococcus pyogenes. The hexacoordinate heme (Fe(II)-protoporphyrin IX) or hemochrome form of holoShp (hemoShp) is stable in air in Tris-HCl buffer, pH 8.0, binds to apoHtsA with a K(d) of 120 +/- 18 microm, and transfers its heme to apoHtsA with a rate constant of(More)
Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full-length globins with the classical eight helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobins, the physiological functions of these plant(More)
The use of hybrid hemoglobin (Hb), with mesoheme substituted for protoheme, allows separate monitoring of the α or β hemes along the allosteric pathway. Using resonance Raman (rR) spectroscopy in silica gel, which greatly slows protein motions, we have observed that the Fe-histidine stretching frequency, νFeHis, which is a monitor of heme reactivity,(More)
Detailed comparisons of the carbon monoxide FTIR spectra and ligand-binding properties of a library of E7, E11, and B10 mutants indicate significant differences in the role of electrostatic interactions in the distal pockets of wild-type sperm whale myoglobin and soybean leghemoglobin. In myoglobin, strong hydrogen bonds from several closely related(More)
The protein from Arabidopsis thaliana gene locus At1g79260.1 is comprised of 166-residues and is of previously unknown function. Initial structural studies by the Center for Eukaryotic Structural Genomics (CESG) suggested that this protein might bind heme, and consequently, the crystal structures of apo and heme-bound forms were solved to near atomic(More)
Although molecular dynamics simulations suggest multiple interior pathways for O(2) entry into and exit from globins, most experiments indicate well defined single pathways. In 2001, we highlighted the effects of large-to-small amino acid replacements on rates for ligand entry and exit onto the three-dimensional structure of sperm whale myoglobin. The(More)
The monomeric hemoglobin of the nemertean worm Cerebratulus lacteus functions as an oxygen storage protein to maintain neural activity under hypoxic conditions. It shares a large, apolar matrix tunnel with other small hemoglobins, which has been implicated as a potential ligand migration pathway. Here we explore ligand migration and binding within the(More)
Crystal structures of methyl, ethyl, propyl, and butyl isocyanide bound to sperm whale myoglobin (Mb) reveal two major conformations. In the in conformer, His(E7) is in a "closed" position, forcing the ligand alkyl chain to point inward. In the out conformer, His(E7) is in an "open" position, allowing the ligand side chain to point outward. A progressive(More)
The FTIR spectra for alkyl isocyanides (CNRs) change from a single nu(CN) band centered at approximately 2175 cm(-1) to two peaks at approximately 2075 and approximately 2125 cm(-1) upon binding to sperm whale myoglobin (Mb). The low- and high-frequency peaks have been assigned to in and out conformations, respectively. In the in conformation, the ligand is(More)