George B Richter-Addo

Learn More
It is now well-established that mammalian heme proteins are reactive with various nitrogen oxide species and that these reactions may play significant roles in mammalian physiology. For example, the ferrous heme protein myoglobin (Mb) has been shown to reduce nitrite (NO(2)(-)) to nitric oxide (NO) under hypoxic conditions. We demonstrate here that the(More)
The crystal structure of tetrameric (αβ)(2) R-state human adult aquomethemoglobin is reported at 2.0 Å resolution. The asymmetric unit contained one αβ subunit pair. The R-state crystal belonged to space group P4(1)2(1)2, with unit-cell parameters a = b = 53.6, c = 192.8 Å. An Fe-bound water molecule was modeled into the heme distal pockets of each of the α(More)
Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia. The latest advances in our understanding of the(More)
Nitrite is an important species in the global nitrogen cycle, and the nitrite reductase enzymes convert nitrite to nitric oxide (NO). Recently, it has been shown that hemoglobin and myoglobin catalyze the reduction of nitrite to NO under hypoxic conditions. We have determined the 1.20 A resolution crystal structure of the nitrite adduct of ferric horse(More)
The interactions of nitric oxide (NO) and organic nitroso compounds with heme proteins are biologically important, and adduct formation between NO-containing compounds and myoglobin (Mb) have served as prototypical systems for studies of these interactions. We have prepared crystals of horse heart (hh) MbNO from nitrosylation of aqua-metMb crystals, and we(More)
The six-coordinate nitrosyl sigma-bonded aryl(iron) and -(ruthenium) porphyrin complexes (OEP)Fe(NO)(p-C(6)H(4)F) and (OEP)Ru(NO)(p-C(6)H(4)F) (OEP = octaethylporphyrinato dianion) have been synthesized and characterized. Single-crystal X-ray structure determinations reveal an unprecedented bending and tilting of the MNO group for both [MNO](6) species as(More)
The nitrite anion is known to oxidize and degrade hemoglobin (Hb). Recent literature reports suggest a nitrite reductase activity for Hb, converting nitrite into nitric oxide. Surprisingly, no structural information about Hb-nitrite interactions has been reported. We have determined the crystal structure of the ferric Hb-nitrite complex at 1.80 A(More)