George A Kyrala

Learn More
Indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 megajoule. One hundred and ninety-two simultaneously fired laser beams heat ignition-emulate hohlraums to radiation temperatures of 3.3 million kelvin, compressing 1.8-millimeter-diameter capsules(More)
The dilation x-ray imager (DIXI) [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010); S. R. Nagel et al., ibid. 83, 10E116 (2012); S. R. Nagel et al., ibid. 85, 11E504 (2014)] is a high-speed x-ray framing camera that uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps. This is a 10 × improvement over conventional(More)
Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165  μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot(More)
We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into(More)
Radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm2,(More)
The plastic response of beryllium was investigated during loading by laser-induced shock waves, using surface velocimetry and in-situ x-ray diffraction. Results from loading by thermal x-rays (hohlraum) were consistent with more extensive studies using laser ablation. Strong elastic waves were observed, up to ∼1 km/s in free surface speed, with significant(More)
The plastic response of beryllium was investigated on nanosecond time scales appropriate for inertial confinement fusion fuel capsules, using laser-induced shock waves, with the response probed with surface velocimetry and in-situ x-ray diffrac-tion. Results from loading by thermal x-rays (hohlraum) were consistent with more extensive studies using laser(More)
Laser-induced shock waves in condensed matter have important applications in dynamic material studies and high pressure physics. We briefly review some techniques in laser-induced shock waves, including direct laser drive, laser-launched flyer plate, quasi-isentropic loading, point and line imaging velocity interferometry, transient X-ray diffraction,(More)
  • 1